The reaction of benzoborirene with one equivalent of isocyanides leads to benzene-fused boretes bearing one imine function, while the reaction with two equivalents of isocyanide affords 2,3-dihydro-2,3-diiminoboroles with perfect regioselectivity. The isocyanide double insertion products represent a novel type of 1,2-diimine with a benzoborole backbone. The reduction chemistry of the benzoborole-supported 1,2-diimine was investigated. Single- and two-electron reduction allow for the isolation and full characterization of a radical anion and a dianion, respectively. In stark contrast to the ordinary boroles, which should turn aromatic by accepting two electrons, the antiaromatic character of the benzoborole backbone is highlighted upon reduction, thus presenting a rare example of antiaromatic borole dianion. Detailed quantum chemical calculations provide a rationale for the observed regioselectivity and the electronic structure of the reduced borole diimine species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202312608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!