Fruit Flies: Challenges and Opportunities to Stem the Tide of Global Invasions.

Annu Rev Entomol

Cervantes Agritech, Canberra, Australian Capital Territory, Australia; email:

Published: January 2024

Global trade in fresh fruit and vegetables, intensification of human mobility, and climate change facilitate fruit fly (Diptera: Tephritidae) invasions. Life-history traits, environmental stress response, dispersal stress, and novel genetic admixtures contribute to their establishment and spread. Tephritids are among the most frequently intercepted taxa at ports of entry. In some countries, supported by the rules-based trade framework, a remarkable amount of biosecurity effort is being arrayed against the range expansion of tephritids. Despite this effort, fruit flies continue to arrive in new jurisdictions, sometimes triggering expensive eradication responses. Surprisingly, scant attention has been paid to biosecurity in the recent discourse about new multilateral trade agreements. Much of the available literature on managing tephritid invasions is focused on a limited number of charismatic (historically high-profile) species, and the generality of many patterns remains speculative.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-ento-022723-103200DOI Listing

Publication Analysis

Top Keywords

fruit flies
8
fruit
4
flies challenges
4
challenges opportunities
4
opportunities stem
4
stem tide
4
tide global
4
global invasions
4
invasions global
4
global trade
4

Similar Publications

Sucralose uses reward pathways to promote acute caloric intake.

Neuropeptides

January 2025

The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia. Electronic address:

Non-nutritive sweeteners (NNSs) are used to reduce caloric intake by replacing sugar with compounds that are sweet but contain little or no calories. In this study, we investigate how non-nutritive sweetener sucralose to promote acute food intake in the fruit fly Drosophila melanogaster. Our results showed that acute exposure to NNSs sweetness induces a robust hyperphagic response in flies.

View Article and Find Full Text PDF

Autoregulation of the glial gene reversed polarity in Drosophila.

Sci Rep

January 2025

Department of Biology, The University of Mississippi, University, MS, 38677, USA.

During development, cells of the nervous system begin as unspecified precursors and proceed along one of two developmental paths to become either neurons or glia. Work in the fruit fly Drosophila melanogaster has established the role of the transcription factor Glial cells missing (Gcm) in directing neuronal precursor cells to assume a glial cell fate. Gcm acts on many target genes, one of which is reversed polarity (repo).

View Article and Find Full Text PDF

Optimizing decision-making potential, cost, and environmental impact of traps for monitoring olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae).

J Econ Entomol

January 2025

Department of Agronomy, María de Maeztu Excellence Unit DAUCO, ETSIAM, University of Cordoba, Campus de Rabanales, Building C4 Celestino Mutis, 14071 Cordoba, Spain.

This work aimed to optimize olive fruit fly (OFF) Bactrocera oleae (Rossi) (Diptera: Tephritidae) monitoring and integrated management, thereby ensuring optimal and less-costly decision-making and timely intervention. Field trials in Andalusia (Spain) were undertaken over 2 years to optimize trap model, color, size, and density for the accurate determination of pest spatial distribution and damage as a function of olive cultivar. McPhail traps and yellow sticky panels outperformed the other 4 models with respect to the number of OFF captured.

View Article and Find Full Text PDF

A two-level staging system for the embryonic morphogenesis of the Mediterranean fruit fly (medfly) Ceratitis capitata.

PLoS One

January 2025

Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt-Macromolecular Complexes (CEF-MC), Goethe-Universität-Frankfurt am Main (Campus Riedberg), Frankfurt am Main, Germany.

Comparative studies across multiple species provide valuable insights into the evolutionary diversification of developmental strategies. While the fruit fly Drosophila melanogaster has long been the primary insect model organism for understanding molecular genetics and embryonic development, the Mediterranean fruit fly Ceratitis capitata, also known as medfly, presents a promising complementary model for studying developmental biology. With its sequenced genome and a diverse array of molecular techniques, the medfly is well-equipped for study.

View Article and Find Full Text PDF

Invasion History and Dispersion Dynamics of the Mediterranean Fruit Fly in the Balkan Peninsula.

Insects

December 2024

Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Volos, Greece.

The Mediterranean fruit fly (medfly), (Wiedemann 1824; Diptera, Tephritidae), is considered one of the most important pests, infesting more than 300 species of fresh fruit and vegetables worldwide. The medfly is an important invasive species, which has spread from the eastern part of sub-Saharan Africa to all of the world's continents in recent centuries. Currently, the medfly is expanding its geographical range to cooler, temperate areas of the world, including northern areas of Mediterranean countries and continental areas of Central Europe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!