Promiscuous enzymes play a crucial role in organism survival and new reaction mining. However, comprehensive mapping of the catalytic and regulatory mechanisms hasn't been well studied due to the characteristic complexity. The cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) with complex epimerization and isomerization was chosen to comprehensively investigate the promiscuous mechanisms. Here, the catalytic frame of ring-opening, cis-enediol mediated catalysis and ring-closing was firstly determined. To map the full view of promiscuous CE, the structure of CsCE complex with the isomerized product glucopyranosyl-β1,4-fructose was determined. Combined with computational calculation, the promiscuity was proved a precise cooperation of the double subsites, loop rearrangement, and intermediate swaying. The flexible loop was like a gear, whose structural reshaping regulates the sway of the intermediates between the two subsites of H377-H188 and H377-H247, and thus regulates the catalytic directions. The different protonated states of cis-enediol intermediate catalyzed by H188 were the key point for the catalysis. The promiscuous enzyme tends to utilize all elements at hand to carry out the promiscuous functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.127093 | DOI Listing |
J Am Chem Soc
October 2024
Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium.
Revisiting the impact of the first and often deemed trivial postsynthetic step, i.e., a high-temperature oxidative calcination to remove organic templates, increases our understanding of thermal acid site evolution and Al distributions.
View Article and Find Full Text PDFInt J Biol Macromol
December 2023
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Promiscuous enzymes play a crucial role in organism survival and new reaction mining. However, comprehensive mapping of the catalytic and regulatory mechanisms hasn't been well studied due to the characteristic complexity. The cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) with complex epimerization and isomerization was chosen to comprehensively investigate the promiscuous mechanisms.
View Article and Find Full Text PDFSmall
October 2023
Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-Eup, Dalseong-gun, Daegu, 42988, Republic of Korea.
Tailoring the Li microenvironment is crucial for achieving fast ionic transfer and a mechanically reinforced solid-electrolyte interphase (SEI), which administers the stable cycling of Li-metal batteries (LMBs). Apart from traditional salt/solvent compositional tuning, this study presents the simultaneous modulation of Li transport and SEI chemistry using a citric acid (CA)-modified silica-based colloidal electrolyte (C-SCE). CA-tethered silica (CA-SiO ) can render more active sites for attracting complex anions, leading to further dissociation of Li from the anions, resulting in a high Li transference number (≈0.
View Article and Find Full Text PDFChem Commun (Camb)
January 2023
Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
The activity and selectivity of acid-catalyzed chemistry is highly dependent on the Brønsted and Lewis acid sites generated by Al substitutions in a zeolite framework with the desired pore architecture. The siting of two Al atoms in close proximity in the framework of high-silica zeolites can also play a decisive role in improving the performance of redox catalysts by producing exchangeable positions for extra-framework multivalent cations. Thus, considerable attention has been devoted to controlling the Al incorporation through direct synthesis approaches and post-synthesis treatments to optimize the performance as (industrial) solid catalysts and to develop new acid- and redox-catalyzed reactions.
View Article and Find Full Text PDFSensors (Basel)
July 2021
Electronic Information School, Wuhan University, Wuhan 430072, China.
Orthogonal frequency division multiplexing (OFDM) has been widely adopted in underwater acoustic (UWA) communication due to its good anti-multipath performance and high spectral efficiency. For UWA-OFDM systems, channel state information (CSI) is essential for channel equalization and adaptive transmission, which can significantly affect the reliability and throughput. However, the time-varying UWA channel is difficult to estimate because of excessive delay spread and complex noise distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!