Characterisation, evolution and expression analysis of the interferon regulatory factor (IRF) family from olive flounder (Paralichthys olivaceus) in response to Edwardsiella tarda infection and temperature stress.

Fish Shellfish Immunol

Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China. Electronic address:

Published: November 2023

Interferon regulatory factor (IRF) family involves in the transcriptional regulation of type I Interferons (IFNs) and IFN-stimulated genes (ISGs) and plays a critical role in cytokine signaling and immune response. However, systematic identification of the IRF gene family in teleost has been rarely reported. In this study, twelve IRF members, named PoIRF1, PoIRF2, PoIRF3, PoIRF4a, PoIRF4b, PoIRF5, PoIRF6, PoIRF7, PoIRF8, PoIRF9, PoIRF10 and PoIRF11, were identified from genome-wide data of olive flounder (Paralichthys olivaceus). Phylogenetic analysis indicated that PoIRFs could be classified into four clades, including IRF1 subfamily (PoIRF1, PoIRF11), IRF3 subfamily (PoIRF3, PoIRF7), IRF4 subfamily (PoIRF4a, PoIRF8, PoIRF9, PoIRF10) and IRF5 subfamily (PoIRF5, PoIRF6). They were evolutionarily related to their counterparts in other fish. Gene structure and motif analysis showed that PoIRFs protein sequences were highly conserved. Under normal physiological conditions, all PoIRFs were generally expressed in multiple developmental stages and healthy tissues. After E. tarda attack and temperature stress, twelve PoIRFs showed significant and different changes in mRNA levels. The expression of PoIRF1, PoIRF3, PoIRF4a, PoIRF5, PoIRF7, PoIRF8, PoIRF9, PoIRF10 and PoIRF11 could be markedly induced by E. tarda, indicating that they played a key role in the process of antibacterial immunity. Besides, temperature stress could significantly stimulate the expression of PoIRF3, PoIRF5, PoIRF6 and PoIRF7, indicating that they could transmit signals rapidly when the temperature changes. In conclusion, this study reported the molecular properties and expression analysis of PoIRFs, and explored their role in immune response, which laid a favorable foundation for further studies on the evolution and functional characteristics of the IRF family in teleost fish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2023.109115DOI Listing

Publication Analysis

Top Keywords

irf family
12
temperature stress
12
poirf5 poirf6
12
poirf8 poirf9
12
poirf9 poirf10
12
expression analysis
8
interferon regulatory
8
regulatory factor
8
factor irf
8
olive flounder
8

Similar Publications

Uncovering selection pressures on the IRF gene family in bats' immune system.

Immunogenetics

January 2025

Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Químicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, C.P. 11340, Ciudad de México, Mexico.

Unlike other mammals, bats serve as natural reservoirs for several highly pathogenic viruses without exhibiting symptoms of infection. Recent research has explored the complex mechanisms underlying the balance between bats' antiviral defenses and their pathological responses. However, the evolution of the molecular drivers behind bats' antiviral strategies remains largely unknown.

View Article and Find Full Text PDF

A Definition of a Heywood Case in Item Response Theory Based on Fisher Information.

Entropy (Basel)

December 2024

Ph.D. Program in Educational Psychology, CUNY Graduate Center, New York, NY 10016, USA.

Heywood cases and other improper solutions occur frequently in latent variable models, e.g., factor analysis, item response theory, latent class analysis, multilevel models, or structural equation models, all of which are models with response variables taken from an exponential family.

View Article and Find Full Text PDF

Role of Interferon Regulatory Factor 1 in acute and chronic virus infections.

Virology

December 2024

Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA. Electronic address:

Decades of research have defined the function of interferon regulatory factors (IRFs) in the antiviral immune response. Interferon regulatory factor-1 (IRF-1) is the founding member of the IRF family, with recognized antiviral effects across diverse virus infections. While most antiviral activities of IRF-1 were defined in vitro, fewer studies examined the role of IRF-1 during viral infection of an intact host.

View Article and Find Full Text PDF

Monoterpene indole alkaloids (MIAs) are valuable metabolites produced in numerous medicinal plants from the Apocynaceae family such as Alstonia scholaris, which synthesizes strictamine, a MIA displaying neuropharmacological properties of a potential importance. To get insights into the MIA metabolism in A. scholaris, we studied here both the spatial and transcriptional regulations of MIA genes by performing a robust transcriptomics analysis of the main plant organs, leaf epidermis but also by sequencing RNA from leaves transiently overexpressing the master transcriptional regulator MYC2.

View Article and Find Full Text PDF

Background: Members of the interferon regulatory factor (IRF) family are transcriptional regulators that play vital roles in the inflammatory response of macrophages. IRF1, IRF3, and IRF9 regulate the expression of immune-responsive gene 1 (IRG1) in macrophages. However, the role of IRF2 in the inflammatory response of macrophages remains somewhat contradictory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!