With the current expansion of urban areas and industrial development, the increasing discharge of wastewater containing bacteria poses a threat to human health. Although substantial advancements have been made in antibacterial materials, there is still a need for an efficient method that can thoroughly remove bacteria through sterilization and adsorption during wastewater treatment. Here, we report a mussel-inspired antibacterial sponge with outstanding antibacterial efficiency exceeding 95% and a high removal ratio of the bacterial corpses for water purification after contacting for 30 min. The high-efficient antibacterial performance is attributed to the stable releasing property of Ag and the charge interaction with quaternary amine salts. Combining the key features, including high-efficient, synergistic mechanism, and corpse capture, the antibacterial sponge shows excellent disinfection effects. This study provides a new method for water purification without bacterial residue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.132598 | DOI Listing |
Chem Biodivers
January 2025
SRM Institute of Science and Technology: SRM Institute of Science and Technology (Deemed to be University), Department of Chemical Engineering, Kattankulathur, 603203, Chengalpattu, INDIA.
The rising threat of antimicrobial resistance among pathogens highlights the critical need for novel antimicrobial agents. This study explores the potential of natural products by investigating hexane extracts from the marine sponge Haliclona fibulata (HF) for their antibacterial efficacy. The well diffusion method of HF extract showed significant antibacterial activity against P.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:
The development of self-elastic sponges with enhanced hemostatic and antibacterial properties to treat noncompressible hemorrhage and facilitate wound healing remains challenging. Herein, we prepared a chitosan sponge reinforced with lauric acid-modified quaternized chitosan (LQC) and attapulgite, features a porous structure, high self-elasticity, and rapid shape recovery. The incorporation of LQC conferred the sponge with an enhanced capacity to promote the adhesion, aggregation, and activation of blood cells, and resistance to infection by Staphylococcus aureus, Escherichia coli, and Methicillin-resistant Staphylococcus aureus; the incorporation of attapulgite enhanced the hydrophilicity and mechanical strength of the sponge, and its ability to activate the intrinsic and extrinsic coagulation pathways.
View Article and Find Full Text PDFBiomed Rep
February 2025
Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan.
Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis).
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA.
Background/objectives: is the third most common sexually transmitted infection (STI), which may become untreatable soon if resistance continues to drastically increase. Due to increases in resistance to recommended antibiotics, alternative sources of novel compounds to combat this threat are being explored. Interestingly, marine sponges have proven to produce a plethora of bioactive compounds that display anticancer, antiviral, antifungal, and antibacterial activity.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P. R. China.
Massive bleeding and bacterial infection of wounds may be life-threatening or even lead to death. Nowadays, gelatin-based hemostatic sponges have been widely used, but gelatin is not antibacterial and has poor structural stability. In this study, we mixed an antibacterial polypeptide, ε-poly-L-lysine (EPL), into gelatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!