Laparoscopy of COVID-19-infected/suspected patients needs to be performed with the utmost care due to the chances of virus carryover through the pneumoperitoneum gas. In this study, polysulfone/polyvinyl-pyrrolidone hollow fiber membranes (HFMs) were fabricated by phase inversion process, and these HFMs were bundled into a module consisting of tortuous, circular-helical arrangement. Further, copper (Cu) and zinc (Zn) nanoparticles (NPs), known to have antimicrobial and antiviral properties, were flow-coated on the lumen side of the HFMs. To test functional efficiency, the modules were challenged with wet aerosol and bioaerosols. Wet aerosol removal efficiency was ∼98%. Bioaerosol-containing bacteria E. coli strain K-12, showed 2.6 log (∼99.8%), and 2.1 log (∼99.3%) removal efficiency for Cu NPs and Zn NPs coated HFMs modules, respectively, and 1.6 log (∼97%) removal for plain (uncoated) HFMs. Bioaerosols containing SARS-CoV-2 surrogate virus (MS2 bacteriophage) showed ∼5-7 log reduction of bacteriophage for plain HFMs, 3.9 log, and 2.3 log reduction for Cu and Zn coated HFMs, respectively. The flow of aerosols entirely through the HFM lumen helps in attaining a low ΔP of < 1 mm Hg, thus rendering its usefulness, particularly for exhausting pneumoperitoneum gases where high upstream pressures could lead to barotrauma. STATEMENT OF ENVIRONMENTAL IMPLICATION: Surgical smoke is generated during minimally invasive surgical (MIS) procedure such as laparoscopy when electrosurgical devices are used to cut any tissues. This smoke is a hazard as it contains toxic volatile compounds, mutagens, carcinogens, bacteria, and virus-laden aerosols. Infection to healthcare professionals through the bioaerosols containing smoke is well reported in literature. The limitation of using hypochlorite and pleated/HEPA filter, led us to design a low pressure drop bioaerosol filter, which can remove smoke, tissue fragments, and COVID-19 virus. It provides a much safer operation theatre environment during MIS procedures as well as in general for bioaerosol removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132517DOI Listing

Publication Analysis

Top Keywords

hollow fiber
8
wet aerosol
8
removal efficiency
8
coated hfms
8
hfms
7
risk mitigation
4
mitigation healthcare
4
healthcare workers
4
workers viral
4
viral bacterial
4

Similar Publications

Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers.

View Article and Find Full Text PDF

Computational fluid particle dynamics modeling of tangential flow filtration in perfusion cell culture.

Bioprocess Biosyst Eng

January 2025

Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.

Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.

View Article and Find Full Text PDF

Suboptimal spatial utilization and inefficient access to internal porosity preclude porous carbon cathodes from delivering high energy density in zinc-ion hybrid capacitors (ZIHCs). Inspired by the function of capillaries in biological systems, this study proposes a facile coordination-pyrolysis method to fabricate thin-walled hollow carbon nanofibers (CNFs) with optimized pore structure and surface functional groups for ZHICs. The capillary-like CNFs maximize the electrode/electrolyte interface area, facilitating the optimal utilization of energy storage sites.

View Article and Find Full Text PDF

Cryopreservation enhances the availability of "off-the-shelf" cell therapies. However, the choice between tissue culture polystyrene (TCP) and hollow fiber system (HFB) system for adipose-derived stem cell (ASC) production remains a critical decision, with implications for scalability, reproducibility, and the clinical efficacy. Therefore, the characteristics of ASCs expanded in TCP and HFB and cryopreserved were compared.

View Article and Find Full Text PDF

Retraction notice to "Air-liquid interface cultivation of Navicula incerta using hollow fiber membranes"[Chemosphere 307 (2022) 135625].

Chemosphere

December 2024

Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, B34, Semenyih, 43500, Selangor, Malaysia.

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!