Phosphorus metabolites occupy a unique place in cellular function as critical intermediates and products of cellular metabolism. Human blood is the most widely used biospecimen in the clinic and in the metabolomics field, and hence an ability to profile phosphorus metabolites in blood, quantitatively, would benefit a wide variety of investigations of cellular functions in health and diseases. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the two premier analytical platforms used in the metabolomics field. However, detection and quantitation of phosphorus metabolites by MS can be challenging due to their lability, high polarity, structural isomerism, and interaction with chromatographic columns. The conventionally used H NMR, on the other hand, suffers from poor resolution of these compounds. As a remedy, P NMR promises an important alternative to both MS and H NMR. However, numerous challenges including the instability of phosphorus metabolites, their chemical shift sensitivity to solvent composition, pH, salt, and temperature, and the lack of identified metabolites have so far restricted the scope of P NMR. In the current study, we describe a method to analyze nearly 25 phosphorus metabolites in blood using a simple one-dimensional (1D) NMR spectrum. Establishment of the identity of unknown metabolites involved a combination of (a) comprehensively analyzing an array of 1D and two-dimensional (2D) H/P homonuclear and heteronuclear NMR spectra of blood; (b) mapping the central carbon metabolic pathway; (c) developing and using H and P spectral and chemical shift databases; and finally (d) confirming the putative metabolite peaks with spiking using authentic compounds. The resulting simple 1D P NMR-based method offers an ability to visualize and quantify the levels of intermediates and products of multiple metabolic pathways, including central carbon metabolism, in one step. Overall, the findings represent a new dimension for blood metabolite analysis and are anticipated to greatly impact the blood metabolomics field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591760PMC
http://dx.doi.org/10.1021/acs.analchem.3c03040DOI Listing

Publication Analysis

Top Keywords

phosphorus metabolites
20
metabolomics field
12
human blood
8
nmr
8
nmr spectroscopy
8
intermediates products
8
metabolites blood
8
chemical shift
8
central carbon
8
blood
7

Similar Publications

Plantago atrata Hoppe is a high-altitude mountain plant exposed to harsh environmental factors. This study aims to elucidate the ecological, phytochemical and pharmacological characteristics of this lesser-known plantain. Despite nutrient-poor peat soil, the leaves of P.

View Article and Find Full Text PDF

Soil Microbial Mechanisms to Improve Pear Seedling Growth by Applying Bacillus and Trichoderma-Amended Biofertilizers.

Plant Cell Environ

January 2025

Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China.

Bacillus velezensis SQR9 or Trichoderma harzianum NJAU4742-amended bioorganic fertilizers might significantly improve the soil microbial community and crop yields. However, the mechanisms these microorganisms act are far away from distinctness. We combined amplicon sequencing with culturable approaches to investigate the effects of these microorganisms on pear tree growth, rhizosphere nutrients and microbial mechanisms.

View Article and Find Full Text PDF

A Study of the Different Strains of the Genus spp. on Increasing Productivity and Stress Resilience in Plants.

Plants (Basel)

January 2025

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.

One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.

View Article and Find Full Text PDF

To investigate the impact of age on the metabolomic profile of loggerhead sea turtles (), this study analyzed 100 plasma samples of individuals across two age groups-50 post-hatchlings and 50 juveniles-from various locations along the Mediterranean coastline. Both targeted and untargeted metabolomic analyses were performed on the samples. Our results demonstrated a significant age-related effect on the metabolomic profiles in both analyses.

View Article and Find Full Text PDF

Rainy and Dry Seasons Are Relevant Factors Affecting Chemical and Antioxidant Properties of Meliponini Honey.

Foods

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.

Brazilian stingless bee species produce honey with distinct physicochemical and bioactive properties shaped by environmental factors. This study investigated the effects of the rainy and dry seasons on the physicochemical characteristics, chemical fingerprinting, mineral content, and antioxidant capacity of honey from and . The honey samples were analyzed for their phytochemical properties (official methods), total phenolics (Folin-Ciocalteu method), flavonoid content (aluminum complex formation method), antioxidant capacity (FRAP and ABTS assays), and antioxidant activity (erythrocyte model).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!