A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

TumorDetNet: A unified deep learning model for brain tumor detection and classification. | LitMetric

AI Article Synopsis

  • * The process of manually identifying tumors from MRI images is complex and time-consuming due to the large volume of 3D images and tumor variability.
  • * The proposed deep learning model, TumorDetNet, shows exceptional performance in tumor detection and classification, achieving up to 99.83% accuracy, making it a powerful tool for improving brain tumor diagnosis.

Article Abstract

Accurate diagnosis of the brain tumor type at an earlier stage is crucial for the treatment process and helps to save the lives of a large number of people worldwide. Because they are non-invasive and spare patients from having an unpleasant biopsy, magnetic resonance imaging (MRI) scans are frequently employed to identify tumors. The manual identification of tumors is difficult and requires considerable time due to the large number of three-dimensional images that an MRI scan of one patient's brain produces from various angles. Moreover, the variations in location, size, and shape of the brain tumor also make it challenging to detect and classify different types of tumors. Thus, computer-aided diagnostics (CAD) systems have been proposed for the detection of brain tumors. In this paper, we proposed a novel unified end-to-end deep learning model named TumorDetNet for brain tumor detection and classification. Our TumorDetNet framework employs 48 convolution layers with leaky ReLU (LReLU) and ReLU activation functions to compute the most distinctive deep feature maps. Moreover, average pooling and a dropout layer are also used to learn distinctive patterns and reduce overfitting. Finally, one fully connected and a softmax layer are employed to detect and classify the brain tumor into multiple types. We assessed the performance of our method on six standard Kaggle brain tumor MRI datasets for brain tumor detection and classification into (malignant and benign), and (glioma, pituitary, and meningioma). Our model successfully identified brain tumors with remarkable accuracy of 99.83%, classified benign and malignant brain tumors with an ideal accuracy of 100%, and meningiomas, pituitary, and gliomas tumors with an accuracy of 99.27%. These outcomes demonstrate the potency of the suggested methodology for the reliable identification and categorization of brain tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530039PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291200PLOS

Publication Analysis

Top Keywords

brain tumor
28
brain tumors
16
brain
12
tumor detection
12
detection classification
12
deep learning
8
learning model
8
large number
8
tumors
8
detect classify
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!