AI Article Synopsis

  • Graph clustering is a crucial data analysis task that uses graph neural networks but often fails to consider the relationships between nodes, leading to subpar clustering results.
  • The authors introduce a new method called relational redundancy-free graph clustering (RFGC) that captures both attribute and structural relationships in graphs, aiming to improve node representation and clustering effectiveness.
  • RFGC uses an autoencoder and a graph autoencoder to preserve important relationships while reducing redundant ones, and it also addresses oversmoothing issues, demonstrating better performance on benchmark datasets compared to existing methods.

Article Abstract

Graph clustering, which learns the node representations for effective cluster assignments, is a fundamental yet challenging task in data analysis and has received considerable attention accompanied by graph neural networks (GNNs) in recent years. However, most existing methods overlook the inherent relational information among the nonindependent and nonidentically distributed nodes in a graph. Due to the lack of exploration of relational attributes, the semantic information of the graph-structured data fails to be fully exploited which leads to poor clustering performance. In this article, we propose a novel self-supervised deep graph clustering method named relational redundancy-free graph clustering (R FGC) to tackle the problem. It extracts the attribute-and structure-level relational information from both global and local views based on an autoencoder (AE) and a graph AE (GAE). To obtain effective representations of the semantic information, we preserve the consistent relationship among augmented nodes, whereas the redundant relationship is further reduced for learning discriminative embeddings. In addition, a simple yet valid strategy is used to alleviate the oversmoothing issue. Extensive experiments are performed on widely used benchmark datasets to validate the superiority of our R FGC over state-of-the-art baselines. Our codes are available at https://github.com/yisiyu95/R2FGC.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3314451DOI Listing

Publication Analysis

Top Keywords

graph clustering
16
graph
7
relational
5
clustering
5
redundancy-free self-supervised
4
self-supervised relational
4
relational learning
4
learning graph
4
clustering graph
4
clustering learns
4

Similar Publications

Multi-view clustering has garnered significant attention due to its capacity to utilize information from multiple perspectives. The concept of anchor graph-based techniques was introduced to manage large-scale data better. However, current methods rely on K-means or uniform sampling to select anchors in the original space.

View Article and Find Full Text PDF

Accurate prediction of drug-drug interaction (DDI) is essential to improve clinical efficacy, avoid adverse effects of drug combination therapy, and enhance drug safety. Recently researchers have developed several computer-aided methods for DDI prediction. However, these methods lack the substructural features that are critical to drug interactions and are not effective in generalizing across domains and different distribution data.

View Article and Find Full Text PDF

Despite significant advancements in single-cell representation learning, scalability and managing sparsity and dropout events continue to challenge the field as scRNA-seq datasets expand. While current computational tools struggle to maintain both efficiency and accuracy, the accurate connection of these dropout events to specific biological functions usually requires additional, complex experiments, often hampered by potential inaccuracies in cell-type annotation. To tackle these challenges, the Zero-Inflated Graph Attention Collaborative Learning (ZIGACL) method has been developed.

View Article and Find Full Text PDF

Structural indicators, also known as structural descriptors, including order parameters, have been proposed to quantify the structural properties of water to account for its anomalous behaviors. However, these indicators, mainly designed for bulk water, are not naturally transferrable to the vicinity of ions due to disruptions in the immediate neighboring space and a resulting loss of feature completeness. To address these non-bulk defects, we introduced a structural indicator that draws on the concept of clique number from graph theory and the criterion in agglomerative clustering, denoted as the average cluster number.

View Article and Find Full Text PDF

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!