Since the early 2000s, studies of the evolution of venom within animals have rapidly expanded, offering new revelations on the origins and development of venom within various species. The venomous mammals represent excellent opportunities to study venom evolution due to the varying functional usages, the unusual distribution of venom across unrelated mammals and the diverse variety of delivery systems. A group of mammals that excellently represents a combination of these traits are the slow ( spp.) and pygmy lorises ( spp.) of south-east Asia, which possess the only confirmed two-step venom system. These taxa also present one of the most intriguing mixes of toxic symptoms (cytotoxicity and immunotoxicity) and functional usages (intraspecific competition and ectoparasitic defence) seen in extant animals. We still lack many pieces of the puzzle in understanding how this venom system works, why it evolved what is involved in the venom system and what triggers the toxic components to work. Here, we review available data building upon a decade of research on this topic, focusing especially on why and how this venom system may have evolved. We discuss that research now suggests that venom in slow lorises has a sophisticated set of multiple uses in both intraspecific competition and the potential to disrupt the immune system of targets; we suggest that an exudate diet reveals several toxic plants consumed by slow and pygmy lorises that could be sequestered into their venom and which may help heal venomous bite wounds; we provide the most up-to-date visual model of the brachial gland exudate secretion protein (BGEsp); and we discuss research on a complement component 1r (C1R) protein in saliva that may solve the mystery of what activates the toxicity of slow and pygmy loris venom. We conclude that the slow and pygmy lorises possess amongst the most complex venom system in extant animals, and while we have still a lot more to understand about their venom system, we are close to a breakthrough, particularly with current technological advances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536643 | PMC |
http://dx.doi.org/10.3390/toxins15090514 | DOI Listing |
World Allergy Organ J
January 2025
Department of Pediatric Allergy and Immunology, Ankara Yıldırım Beyazıt University, Ankara, Turkey.
Background: The incidence of anaphylaxis is increasing worldwide. However, there is a lack of data on anaphylaxis trends in Türkiye. This study aims to analyse trends in anaphylaxis-related emergency department (ED) visits and examines factors associated with fatal anaphylaxis in Türkiye.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil; Center of Toxins, Cell Signaling and Immune Response (CeTICS), CEPID, FAPESP, Brazil. Electronic address:
The complement system plays a crucial role in various pathophysiological conditions, including snake envenomation. In this study, we investigated the effects of Bitis arietans venom on the complement system using an ex vivo human whole blood model. Our findings demonstrate that B.
View Article and Find Full Text PDFToxicon
January 2025
Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil. Electronic address:
Our study identified high-molecular-weight compounds from Tityus serrulatus venom (TsV), and most of them have not yet been well explored. TsV was fractionated using FPLC system with different columns, analyzed by SDS-PAGE, and characterized by MALDI-TOF/TOF. Our study showed that TsV contains several high-molecular-weight compounds, including CRISPs, metalloproteinase and hyaluronidase.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia. Electronic address:
Envenomation accidents are usually diagnosed at the hospital through signs and symptoms assessment such as short breath, dizziness and vomiting, numbness, swilling, bruising, or bleeding around the affected site. However, this traditional method provides inaccurate diagnosis given the interface between snakebites and scorpion stings symptoms. Therefore, early determination of bites/stings source would help healthcare professionals select the suitable treatment for patients, thus improving envenomation management.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany.
Naturally occurring protein toxins can derive from bacteria, fungi, plants, and animal venom. Traditionally, toxins are known for their destructive effects on host cells. Despite, and sometimes even because of, these harmful effects, toxins have been used for medical benefits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!