A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metal Ions Modify In Vitro DNA Damage Yields with High-LET Radiation. | LitMetric

Cu and Co are metals known to increase DNA damage in the presence of hydrogen peroxide through a Fenton-type reaction. We hypothesized that these metals could increase DNA damage following irradiations of increasing LET values as hydrogen peroxide is a product of the radiolysis of water. The reaction mixtures contain either double- or single-stranded DNA in solution with Cu or Co and were irradiated either with X-ray, carbon-ion or iron-ion beams, or they were treated with hydrogen peroxide or bleomycin at increasing radiation dosages or chemical concentrations. DNA damage was then assessed via gel electrophoresis followed with a band intensity analysis. DNA damage was the greatest when DNA in the solution with either metal was treated with only hydrogen peroxide followed by the DNA damage of DNA in the solution with either metal post irradiation of low-LET (X-Ray) or high-LET (carbon-ion and iron-ion), respectively, and demonstrated the least damage after treatment with bleomycin. Cu portrayed greater DNA damage than Co following all experimental conditions. The metals' effect caused more DNA damage and was observed to be LET-dependent for single-strand break formation but inversely dependent for double-strand break formation. These results suggest that Cu is more efficient than Co at inducing both DNA single-strand and double-strand breaks following all irradiations and chemical treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537317PMC
http://dx.doi.org/10.3390/toxics11090773DOI Listing

Publication Analysis

Top Keywords

dna damage
32
hydrogen peroxide
16
dna
12
dna solution
12
damage
9
metals increase
8
increase dna
8
carbon-ion iron-ion
8
treated hydrogen
8
solution metal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!