Puerarin Prevents Bisphenol S Induced Lipid Accumulation by Reducing Liver Lipid Synthesis and Promoting Lipid Metabolism in C57BL/6J Mice.

Toxics

Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.

Published: August 2023

Bisphenol S (BPS) is an environmental pollutant that can accumulate in the human body and cause harm. Puerarin (PUE) is a flavonoid with anti-inflammatory and antioxidant effects. In this study, we used 50 mg/kg/d BPS as a poison and PUE as an intervention for model mice for 42 d. BPS exposure significantly increased the levels of the impairment of the mice's liver function, T-CHO, TG, LDL-C, ALT, and AST in the BPS group were significantly increased ( < 0.05). Additionally, BPS exposure caused inflammatory cell infiltration in the mice liver tissue and enhanced oxidative stress response, the level of MDA was significantly increased ( < 0.05). The expression of CD36 and pparγ was stimulated after BPS exposure. Moreover, the expression of cpt1a and cpt1b, which promote fatty acid oxidation, was downregulated. After PUE intervention, the levels of genes and proteins involved in lipid synthesis (PPARγ, SREBP1C, and FASN) and metabolism (Cpt1a, Cpt1b, and PPARα) in mice returned to those of the control group, or much higher than those in the BPS group. Therefore, we hypothesized that BPS causes lipid accumulation in the liver by promoting lipid synthesis and reducing lipid metabolism, whereas PUE reduces lipid synthesis and promotes lipid metabolism. Conclusively, our results imply that long-term exposure to BPS in mice affects liver lipid metabolism and that PUE intervention could maintain the liver function of mice at normal metabolic levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538013PMC
http://dx.doi.org/10.3390/toxics11090736DOI Listing

Publication Analysis

Top Keywords

lipid synthesis
16
lipid metabolism
16
pue intervention
12
bps exposure
12
lipid
10
bps
9
lipid accumulation
8
liver lipid
8
promoting lipid
8
liver function
8

Similar Publications

Vitamin D is crucial for maintaining bone health and development, and bone mineral accumulation during childhood and adolescence affects long-term bone health. Vitamin D deficiency has been widely recognized as one of the main causes of osteoporosis and fractures, especially during the growth and development stage of children. Recent studies have shown that vitamin D deficiency may affect the deviation of bone development in children by mediating lipid metabolism disorders, but its specific mechanism of action has not been fully elucidated.

View Article and Find Full Text PDF

Omentin-1 mitigates non-alcoholic fatty liver disease by preserving autophagy through AMPKα/mTOR signaling pathway.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.

Adipose tissue-derived adipokines facilitate inter-organ communication between adipose tissue and other organs. Omentin-1, an adipokine, has been implicated in the regulation of glucose and insulin metabolism. However, limited knowledge exists regarding the regulatory impact of endogenous omentin-1 on hepatic steatosis.

View Article and Find Full Text PDF

VPS28 (vacuolar protein sorting 28) is a subunit of the endosomal sorting complexes required for transport (ESCRTs) and is involved in ubiquitination. Ubiquitination is a critical system for protein degradation in eukaryotes. Considering the recent findings on the role of ubiquitination in the regulation of lipid metabolism, we hypothesized that VPS28 might affect the expression of genes involved in milk fat synthesis.

View Article and Find Full Text PDF

Effects of Aging on Glucose and Lipid Metabolism in Mice.

Aging Cell

December 2024

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.

View Article and Find Full Text PDF

Background: There is still no reliable therapeutic targets and effective pharmacotherapy for metabolic dysfunction-associated steatotic liver disease (MASLD). RASD1 is short for Ras-related dexamethasone-induced 1, a pivotal factor in various metabolism processes of Human. However, the role of RASD1 remains poorly illustrated in MASLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!