Proteases and lipases are significant groups of enzymes for commercialization at the global level. Earlier, the industries depended on mesophilic proteases and lipases, which remain nonfunctional under extreme conditions. The discovery of extremophilic microorganisms, especially those belonging to haloarchaea, paved a new reserve of industrially competent extremozymes. Haloarchaea or halophilic archaea are polyextremophiles of domain Archaea that grow at high salinity, elevated temperature, pH range (pH 6-12), and low a. Interestingly, haloarchaeal proteolytic and lipolytic enzymes also perform their catalytic function in the presence of 4-5 M NaCl in vivo and in vitro. Also, they are of great interest to study due to their capacity to function and are active at elevated temperatures, tolerance to pH extremes, and in non-aqueous media. In recent years, advances have been achieved in various aspects of genomic/molecular expression methods involving homologous and heterologous processes for the overproduction of these extremozymes and their characterization from haloarchaea. A few protease and lipase extremozymes have been successfully expressed in prokaryotic systems, especially E.coli, and enzyme modification techniques have improved the catalytic properties of the recombinant enzymes. Further, in-silico methods are currently applied to elucidate the structural and functional features of salt-stable protease and lipase in haloarchaea. In this review, the production and purification methods, catalytic and biochemical properties and biotechnological applications of haloextremozymes proteases and lipases are summarized along with recent advancements in overproduction and characterization of these enzymes, concluding with the directions for further in-depth research on proteases and lipases from haloarchaea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-023-03779-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!