Objective: We aimed to develop and validate a radiomics nomogram and determine the value of radiomic features from lymph nodes (LNs) for predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced esophageal squamous cell carcinoma (ESCC).
Methods: In this multicenter retrospective study, eligible participants who had undergone NCRT followed by radical esophagectomy were consecutively recruited. Three radiomics models (model, model, and model) based on tumor and LN features, alone and combined, were developed in the training cohort. The radiomics nomogram was developed by incorporating the prediction value of the radiomics model and clinicoradiological risk factors using multivariate logistic regression, and was evaluated using the receiver operating characteristic curve, validated in two external validation cohorts.
Results: Between October 2011 and December 2018, 116 patients were included in the training cohort. Between June 2015 and October 2020, 51 and 27 patients from two independent hospitals were included in validation cohorts 1 and 2, respectively. The radiomics model performed better than the radiomics model for predicting pCR. The radiomics nomogram incorporating the predictive value of the radiomics model and heterogeneous after NCRT outperformed the clinicoradiological model, with an area under the curve (95% confidence interval) of 0.833 (0.765-0.894) versus 0.764 (0.686-0.833) [p = 0.088, DeLong test], 0.824 (0.718-0.909) versus 0.692 (0.554-0.809) [p = 0.012], and 0.902 (0.794-0.984) versus 0.696 (0.526-0.857) [p = 0.024] in all three cohorts.
Conclusions: Radiomic features from LNs could provide additional value for predicting pCR in ESCC patients, and the radiomics nomogram provided an accurate prediction of pCR, which might aid treatment decision.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1245/s10434-023-14253-1 | DOI Listing |
Front Oncol
November 2024
Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
Purpose: This study aimed to develop and validate a model for accurately assessing the risk of distant metastases in patients with gastric cancer (GC).
Methods: A total of 301 patients (training cohort, n = 210; testing cohort, n = 91) with GC were retrospectively collected. Relevant clinical predictors were determined through the application of univariate and multivariate logistic regression analyses.
Front Oncol
December 2024
Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China.
Objectives: The accurate assessment of lymph node metastasis (LNM) can facilitate clinical decision-making on radiotherapy or radical hysterectomy (RH) in cervical adenocarcinoma (AC)/adenosquamous carcinoma (ASC). This study aims to develop a deep learning radiomics nomogram (DLRN) to preoperatively evaluate LNM in cervical AC/ASC.
Materials And Methods: A total of 652 patients from a multicenter were enrolled and randomly allocated into primary, internal, and external validation cohorts.
Acad Radiol
December 2024
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China (B.W., X.H., Z.Z., Z.L., S.L.). Electronic address:
Rationale And Objectives: To develop and validate a radiomics signature, utilizing baseline and restaging CT, for preoperatively predicting progression-free survival (PFS) after neoadjuvant chemotherapy (NAC) in locally advanced gastric cancer (LAGC).
Methods: A total of 316 patients with LAGC who received NAC followed by gastrectomy were retrospectively included in this single-center study; these patients were split into two cohorts, one for training (n = 243) and the other for validation (n = 73), based on the different districts of our hospital. A total of 1316 radiomics features were extracted from the volume of interest of the gastric-cancer lesion on venous phase CT images.
Acad Radiol
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:
Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).
Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).
Eur J Radiol
December 2024
Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China. Electronic address:
Purpose: Microvascular invasion (MVI) serves as a significant predictor of poor prognosis in intrahepatic cholangiocarcinoma (ICC). This study aims to establish a comprehensive model utilizing MR radiomics for preoperative MVI status stratification and outcome prediction in ICC patients.
Materials And Methods: A total of 249 ICC patients were randomly assigned to training and validation cohorts (174:75), along with a time-independent test cohort consisting of 47 ICC patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!