Radiomics Nomogram with Added Nodal Features Improves Treatment Response Prediction in Locally Advanced Esophageal Squamous Cell Carcinoma: A Multicenter Study.

Ann Surg Oncol

Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China.

Published: December 2023

AI Article Synopsis

  • The study aimed to create a radiomics nomogram to help predict the pathological complete response (pCR) to neoadjuvant chemoradiotherapy in patients with advanced esophageal squamous cell carcinoma (ESCC).
  • Using a multicenter retrospective approach, researchers developed three radiomics models based on tumor and lymph node features, integrating these with clinicoradiological factors to assess their predictive power.
  • Results showed that the radiomics nomogram was more effective than existing models in predicting pCR, suggesting that radiomic features from lymph nodes can significantly enhance treatment decision-making for ESCC patients.

Article Abstract

Objective: We aimed to develop and validate a radiomics nomogram and determine the value of radiomic features from lymph nodes (LNs) for predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced esophageal squamous cell carcinoma (ESCC).

Methods: In this multicenter retrospective study, eligible participants who had undergone NCRT followed by radical esophagectomy were consecutively recruited. Three radiomics models (model, model, and model) based on tumor and LN features, alone and combined, were developed in the training cohort. The radiomics nomogram was developed by incorporating the prediction value of the radiomics model and clinicoradiological risk factors using multivariate logistic regression, and was evaluated using the receiver operating characteristic curve, validated in two external validation cohorts.

Results: Between October 2011 and December 2018, 116 patients were included in the training cohort. Between June 2015 and October 2020, 51 and 27 patients from two independent hospitals were included in validation cohorts 1 and 2, respectively. The radiomics model performed better than the radiomics model for predicting pCR. The radiomics nomogram incorporating the predictive value of the radiomics model and heterogeneous after NCRT outperformed the clinicoradiological model, with an area under the curve (95% confidence interval) of 0.833 (0.765-0.894) versus 0.764 (0.686-0.833) [p = 0.088, DeLong test], 0.824 (0.718-0.909) versus 0.692 (0.554-0.809) [p = 0.012], and 0.902 (0.794-0.984) versus 0.696 (0.526-0.857) [p = 0.024] in all three cohorts.

Conclusions: Radiomic features from LNs could provide additional value for predicting pCR in ESCC patients, and the radiomics nomogram provided an accurate prediction of pCR, which might aid treatment decision.

Download full-text PDF

Source
http://dx.doi.org/10.1245/s10434-023-14253-1DOI Listing

Publication Analysis

Top Keywords

radiomics nomogram
20
radiomics model
16
radiomics
10
locally advanced
8
advanced esophageal
8
esophageal squamous
8
squamous cell
8
cell carcinoma
8
radiomic features
8
model
8

Similar Publications

Purpose: This study aimed to develop and validate a model for accurately assessing the risk of distant metastases in patients with gastric cancer (GC).

Methods: A total of 301 patients (training cohort, n = 210; testing cohort, n = 91) with GC were retrospectively collected. Relevant clinical predictors were determined through the application of univariate and multivariate logistic regression analyses.

View Article and Find Full Text PDF

Objectives: The accurate assessment of lymph node metastasis (LNM) can facilitate clinical decision-making on radiotherapy or radical hysterectomy (RH) in cervical adenocarcinoma (AC)/adenosquamous carcinoma (ASC). This study aims to develop a deep learning radiomics nomogram (DLRN) to preoperatively evaluate LNM in cervical AC/ASC.

Materials And Methods: A total of 652 patients from a multicenter were enrolled and randomly allocated into primary, internal, and external validation cohorts.

View Article and Find Full Text PDF

Longitudinal CT Radiomics to Predict Progression-free Survival in Patients with Locally Advanced Gastric Cancer After Neoadjuvant Chemotherapy.

Acad Radiol

December 2024

Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China (B.W., X.H., Z.Z., Z.L., S.L.). Electronic address:

Rationale And Objectives: To develop and validate a radiomics signature, utilizing baseline and restaging CT, for preoperatively predicting progression-free survival (PFS) after neoadjuvant chemotherapy (NAC) in locally advanced gastric cancer (LAGC).

Methods: A total of 316 patients with LAGC who received NAC followed by gastrectomy were retrospectively included in this single-center study; these patients were split into two cohorts, one for training (n = 243) and the other for validation (n = 73), based on the different districts of our hospital. A total of 1316 radiomics features were extracted from the volume of interest of the gastric-cancer lesion on venous phase CT images.

View Article and Find Full Text PDF

Development and Validation of a Nomogram Based on Multiparametric MRI for Predicting Lymph Node Metastasis in Endometrial Cancer: A Retrospective Cohort Study.

Acad Radiol

December 2024

Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:

Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).

Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).

View Article and Find Full Text PDF

An MRI-Based Radiomics Model for Preoperative Prediction of Microvascular Invasion and Outcome in Intrahepatic Cholangiocarcinoma.

Eur J Radiol

December 2024

Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China. Electronic address:

Purpose: Microvascular invasion (MVI) serves as a significant predictor of poor prognosis in intrahepatic cholangiocarcinoma (ICC). This study aims to establish a comprehensive model utilizing MR radiomics for preoperative MVI status stratification and outcome prediction in ICC patients.

Materials And Methods: A total of 249 ICC patients were randomly assigned to training and validation cohorts (174:75), along with a time-independent test cohort consisting of 47 ICC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!