The wastewater released from different industries is a major environmental issue that has grabbed significant attention lately. Thus, the implementation of suitable routes for the treatment of such water is strongly recommended to reach the level of possible reuse for either industrial or agricultural purposes. In line with such a concept, this research work introduces a new composite structure made the coating of polyacrylamide by loading nickel hydroxide nanoparticles for use as an absorbent for the purification of wastewater from dye contaminants. High internal phase emulation (HIPE) polymerization was utilized to first prepare particles of polyacrylamide followed by their coating with particles of nickel hydroxide to ultimately obtain the designated adsorbent. The structural features and chemical composition of the synthesized composite were confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and energetic dispersive X-ray (EDX) spectroscopy. Additionally, scanning electron microscopy (SEM) and N adsorption-desorption surface area analysis were employed to detect the textural characteristics of the composite. Subsequently, the efficiency of this structure, as an adsorbent for the disposal of methylene blue dye species from a wastewater sample, was studied. During the water purification process, several operating parameters, namely, retention time, solution pH, initial concentration, and absorbent dose, were investigated. The presented Ni-polyacrylamide composite achieved the promising removal of methylene blue dye. An increased adsorption capacity of 14.3 mg g toward methylene blue was achieved by the composite, thanks to the presence of both organic and inorganic functional groups within its structure. Kinetic and isotherm studies for the adsorption of methylene blue species were found to fit pseudo-second-order and Langmuir models. Additionally, thermodynamic measurements indicated that the adsorption process of methylene blue is feasible, spontaneous, involves physisorption, and is endothermic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt02696e | DOI Listing |
Sensors (Basel)
December 2024
Division de Fotónica, Centro de Investigaciones en Óptica AC, Loma del Bosque 115, Col. Lomas del Campestre, León 37150, Guanajuato, Mexico.
Methylene blue is a cationic organic dye commonly found in wastewater, groundwater, and surface water due to industrial discharge into the environment. This emerging pollutant is notably persistent and can pose risks to both human health and the environment. In this study, we developed a Surface Plasmon Resonance Biosensor employing a BK7 prism coated with 3 nm chromium and 50 nm of gold in the Kretschmann configuration, specifically for the detection of methylene blue.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
As a crucial biomarker for the early warning and prognosis of liver cancer diseases, elevated levels of alpha-fetoprotein (AFP) are associated with hepatocellular carcinoma and germ cell tumors. Herein, we present a novel signal-on electrochemical aptamer sensor, utilizing AuNPs-MXene composite materials, for sensitive AFP quantitation. The AuNPs-MXene composite was synthesized through a simple one-step method and modified on portable microelectrodes.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.
Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.
Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.
Polymers (Basel)
December 2024
Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
This work focuses on the preparation and application of silver nanoparticles/organophilic clay/polyethylene glycol for the catalytic reduction of the contaminants methylene blue (MB) and 4-nitrophenol (4-NP) in a simple and binary system. Algerian clay was subjected to a series of treatments including acid treatment, ion exchange with the surfactant hexadecyltrimethylammonium bromide (HTABr), immobilization of polyethylene glycol polymer, and finally dispersion of AgNPs. The molecular weight of polyethylene glycol was varied (100, 200, and 4000) to study its effect on the stabilization of silver nanoparticles (AgNPs) and the catalytic activity of the resulting samples.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
Smart fibers with tunable luminescence properties, as a new form of visual output, present the potential to revolutionize personal living habits in the future and are receiving more and more attention. However, a huge challenge of smart fibers as wearable materials is their stretching capability for seamless integration with the human body. Herein, stretchable thermochromic fluorescent fibers are prepared based on self-crystallinity phase change, using elastic polyurethane (PU) as the fiber matrix, to meet the dynamic requirements of the human body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!