First report of Phytophthora ramorum on Cotoneaster sp. in the USA.

Plant Dis

Dominican University of California, 7178, 50 Acacia Ave, San Rafael, California, United States, 94901.

Published: September 2023

Cotoneaster (Rosaceae) is a genus of woody plants native to the Palearctic region which includes popular ornamental plants; some are invasive in parts of the USA. In May 2022 symptomatic leaves were detected on Cotoneaster pannosus (Silverleaf Cotoneaster) in Marin County, California (37.89165, -122.56755 ), an area infested heavily by Phytophthora ramorum, causal agent of Sudden Oak Death. Symptoms consisted of dark brown necrotic spots mostly near the tips and sometimes on the margin of the leaves, covering less than half of the leaf surface; no die-back or symptoms on twigs were detected. Diseased leaves were surface-sterilized with 70% ethanol, washed twice with de-ionized water, and placed on PARPH(V8) media. Two Phytophthora ramorum like isolates (NORS058 and NORS059) were obtained from different leaf samples from the same tree and the internal transcribed spacer (ITS) region was sequenced. Both sequences were deposited in GenBank (OR224345 and OR224346). NORS058 and NORS059 showed 99.88% and 99.75% sequence identity to P. ramorum strain Ex-type CPHST BL 55G (MG865581.1). Detached leaves of C. pannosus and C. lacteus (Milkflower Cotoneaster) were inoculated with mycelial plugs of P. ramorum NORS058, and incubated at 20°C. Both species developed necrotic leaf spots seven days post inoculation (dpi). Sporulation of the pathogen was observed on symptomatic leaves of C. lacteus. P. ramorum was reisolated from the symptomatic leaf tissue from both Cotoneaster species. Pathogenicity tests were also performed on whole plants of C. dammeri (Bearberry Cotoneaster) using the strain NORS058. Five plants each were inoculated using three different methods: 1) a zoospore solution (concentration 2.5 x10E5 spores/mL) were sprayed on the plant surface until run off. Ten leaves per plant were wounded with a needle, the remaining leaves were not wounded; 2) 200 µL of the zoospore solution in a PCR tube were attached to 5 leaves of each plant; and 3) 10 mL of the zoospore solution was drenched into the potting mix of the five plants. Control plants were treated as above but with water instead of the zoospore solution. Leaf spots developed 7 dpi on plants sprayed with zoospores on wounded leaves; and 10 dpi on plants treated with zoospores in the tube. P. ramorum was reisolated from symptomatic leaves treated with the first two methods mentioned above. Plants treated with a soil drench did not develop symptoms on the aerial parts or on roots that were sampled 50 dpi. Tests using AGDIA- immunostrips of the roots were negative. Control plants showed no aerial or root symptoms. To our knowledge, this is the first report of P. ramorum occurring on Cotoneaster in the USA. Previously, inoculation of detached leaves of C. dammeri and C. horizontalis with P. ramorum in Serbia resulted in symptom expression (Bulajić et al. 2010). P. ramorum was reported from a Cotoneaster sp. in the UK in 2010, but no further information were presented (FERA 2015). The tree sampled in 2022 showed symptoms again in spring 2023 and official regulatory samples were taken by the CDFA (California Department of Food and Agriculture) and confirmed by the USDA. During a survey in 2023, more symptomatic Cotoneaster plants were detected in Marin County, California, indicating Cotoneaster might play a role in the epidemiology of the disease. References: FERA 2015. https://planthealthportal.defra.gov.uk/pests-and-diseases/high-profile-pests-and-diseases/phytophthora/ Bulajić et al. 2010. Plant Dis. 94(6): 703.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-07-23-1330-PDNDOI Listing

Publication Analysis

Top Keywords

zoospore solution
16
phytophthora ramorum
12
symptomatic leaves
12
plants treated
12
cotoneaster
11
plants
11
leaves
11
ramorum
10
cotoneaster usa
8
marin county
8

Similar Publications

The global food security crisis is partly caused by significant crop losses due to pests and pathogens, leading to economic burdens. Phytophthora palmivora, an oomycete pathogen, affects many plantation crops and costs over USD 1 billion each year. Unfortunately, there is currently no prevention plan in place, highlighting the urgent need for an effective solution.

View Article and Find Full Text PDF
Article Synopsis
  • Pepper blight caused by Phytophthora capsici poses a significant threat to pepper production, requiring novel management strategies due to resistance to traditional fungicides.
  • The study found that chloroinconazide (CHI) effectively inhibits P. capsici by disrupting its growth and activating a plant immune response, unlike some commercial fungicides that have limited effectiveness.
  • CHI's dual action—targeting mycelial structure and triggering the salicylic acid signaling pathway—suggests it could be a promising alternative fungicide, helping to combat resistance and improve crop protection.
View Article and Find Full Text PDF

Broad-Spectrum Efficacy and Modes of Action of Two Strains against Grapevine Black Rot and Downy Mildew.

J Fungi (Basel)

July 2024

National Research Institute for Agriculture, Food and the Environment (INRAE), Institute of Vine and Wine Sciences (ISVV), UMR Santé Agroécologie du VignoblE (SAVE), 71 Avenue E. Bourlaux, CS 20032, 33882 Villenave d'Ornon, France.

Black rot () and downy mildew () are two major grapevine diseases against which the development of efficient biocontrol solutions is required in a context of sustainable viticulture. This study aimed at evaluating and comparing the efficacy and modes of action of bacterial culture supernatants from Buz14 and S38. Both biocontrol agents (BCA) were previously demonstrated as highly effective against in grapevines.

View Article and Find Full Text PDF

Phytoplankton-chytrid-zooplankton dynamics via a reaction-diffusion-advection mycoloop model.

J Math Biol

June 2024

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada.

Mycoloop is an important aquatic food web composed of phytoplankton, chytrids (one dominant group of parasites in aquatic ecosystems), and zooplankton. Chytrids infect phytoplankton and fragment them for easy consumption by zooplankton. The free-living chytrid zoospores are also a food resource for zooplankton.

View Article and Find Full Text PDF

causing seedling damping-off of in China.

Plant Dis

April 2024

Guangdong Ocean University, 74780, College of Coastal Agriculture Sciences, Department of Biotechnology,Agricultural College,Guangdong Ocean University,Huguang Yan, Zhanjiang, China, 524088;

Hylocereus megalanthus (family Cactaceae), commonly known as bird's nest fruit (Yanwo fruit), was a new tropical plant cultivated commercially in south China because of its high nutritional content and sweet taste. In August 2023, damping-off disease of approximately 60% of seedlings was observed at a nursery in Zhanjiang, Guangdong Province (E110°17'46″ N21°9'2″). Stems of infected seedlings exhibited symptoms of water-soaked tissue which caused collapse at the base of the stem and sloughing of necrotic root cortex tissue was observed (Figure 1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!