The shuttle effect of lithium-sulfur (Li-S) batteries and the poor conductivity of sulfur (S) and lithium polysulfide severely limit their practical applications. Currently, compounding carbon materials with S is one of the effective ways to solve this problem. Therefore, green, low-cost chestnut inner shell biochar (CISC) with graded porous structure was used as the S carrier in this experiment, and carbon nanotubes (CNTs) coating was employed as the S protective layer to improve the electrical conductivity and inhibit the shuttle effect. The results showed that the CISC prepared in this experiment had a relatively high specific surface area (1135.11 m g ), and the S loading rate was as high as 65.72 %. The graded porous structure and high specific surface area of CISC can increase the loading rate of S and thus increase the battery capacity. Meanwhile, the naturally contained O and N elements can improve the chemisorption of S. The initial discharge capacity of the CISC@S/CNTs battery at 0.1 C is 967.3 mAh g , and the capacity retention rate is 74.3 % after 500 cycles. The unique composite structure improves the battery's electrical conductivity, reduces the dissolution of polysulfides, and enhances the battery cycle stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202300604 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!