Fouling comparisons of the organic fractions in surface and algae-laden waters make it possible to determine the main compounds responsible for the fouling of ultrafiltration (UF) membranes. This study examined the fouling of UF membranes and its relationship to the characteristics of the organic fractions found in drinking-water supply. Four types of water were prepared by combining natural organic matter (NOM) from lake water with algal organic matter (AOM) from four algae species commonly found in freshwater. Liquid chromatography-organic carbon detection (LC-OCD) and a fluorescence excitation-emission matrix (FEEM) were used to analyze the feed water and permeate to assess the interactions between and fouling behavior of the organic fractions. The results showed that the interaction of large-molecular-weight AOMs on the membrane surfaces and their transport through the membrane pores were the main fouling mechanisms. Polysaccharides followed by protein-like substances were the organic compounds responsible for the fouling of the UF membranes. The fouling affinity of these substances was attributed to two processes, the adsorption of their carboxyl, hydroxyl and cationic groups on the membrane surfaces, and the molecular complexation of their organic groups. The humic substances' retention was marginal and attributed to the synergetic effects of the polysaccharides and proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535577 | PMC |
http://dx.doi.org/10.3390/membranes13090787 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!