Despite its unrivaled hardness, diamond can be severely worn during the interaction with others, even softer materials. In this work, we calculate from first-principles the energy and forces necessary to induce the atomistic wear of diamond and compare them for different surface orientations and passivation by oxygen, hydrogen, and water fragments. The primary mechanism of wear is identified as the detachment of the carbon chains. This is particularly true for oxidized diamond and diamonds interacting with silica. A very interesting result concerns the role of stress, which reveals that compressive stresses can highly favor wear, making it even energetically favorable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569040 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.3c01800 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!