A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recent Advances in Polyoxometalate Based Nanoplatforms Mediated Reactive Oxygen Species Cancer Therapy. | LitMetric

Recent Advances in Polyoxometalate Based Nanoplatforms Mediated Reactive Oxygen Species Cancer Therapy.

Chem Asian J

College of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China.

Published: November 2023

The potential of reactive oxygen species (ROS) cancer therapy in tumor treatment has been greatly enhanced by the introduction of catalytically superior polyoxometalate (POM)-based nanoplatforms, mainly composed of atomic clusters consisting of pre-transition metals and oxygen. These nanoplatforms have unique advantages, such as Fenton activity at neutral pH, induction of cellular ferroptosis instead of just apoptosis, and sensitivity to external field stimulation. However, there are also inevitable challenges such as neutralization of ROS by the antioxidant system of the tumor microenvironment (TME), hypoxia, and limited hydrogen peroxide concentrations. This review article aims to provide an overview of recent research advancements in POM-based nanoplatforms for ROS therapy from the perspective of chemical reactions and biological processes, addressing endogenous and exogenous factors that affect the antitumor efficacy. Endogenous factors include the mechanism of ROS generation by POM, the impact of pH and antioxidant systems on POM, and the various manners of tumor cell death. Exogenous stimuli mainly include light, heat, X-rays, and electricity. The article analyzes the specific mechanisms of action of each influencing factor in the first two sections, concluding with the limitations of the present study and some possible directions for future research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202300749DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
cancer therapy
8
pom-based nanoplatforms
8
advances polyoxometalate
4
polyoxometalate based
4
nanoplatforms
4
based nanoplatforms
4
nanoplatforms mediated
4
mediated reactive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!