A Load-Velocity Relationship in Sprint?

J Funct Morphol Kinesiol

Faculty of Sports and Budo Coaching Studies, National Institute of Fitness and Sports in Kanoya, Kanoya 891-2393, Japan.

Published: September 2023

The aims were to compare predicted maximal velocity from load-velocity relationships established with different resisted and assisted loads by different regression analyses to the measured maximal velocity during sprint running, and to compare maximal velocity measured between a robotic pulley system and laser gun. Sixteen experienced male sprinters performed regular 50 m sprints, a 50 m with 5-kilogram-assisted sprint, and 10, 20, 30, and 30 m resisted sprints with, respectively, 65, 50, 25, and 10% calculated reduction in maximal velocity. Maximal velocity obtained by laser gun during the regular sprint was compared with predicted maximal velocity calculated from four trendlines (linear and polynomial based upon four resisted loads, and linear and polynomial based upon four resisted and one assisted load). Main findings demonstrate that the robotic pulley system and laser measure similar maximal velocities at all loads except at the load of 10% velocity reduction. Theoretical maximal velocity based upon calculated predictions were underestimated by 0.62-0.22 m/s (2.2-0.78 km/h; 6.7-2.3%) compared to measured maximal velocity. It was concluded that different regression analyses underestimated measured maximal velocity in regular sprinting and polynomial regression analysis (with resisted and assisted loads) estimation was closest to measured velocity (2.3%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531998PMC
http://dx.doi.org/10.3390/jfmk8030135DOI Listing

Publication Analysis

Top Keywords

maximal velocity
36
resisted assisted
12
measured maximal
12
velocity
11
maximal
10
predicted maximal
8
assisted loads
8
regression analyses
8
robotic pulley
8
pulley system
8

Similar Publications

Purpose: Maximal muscle strength is often assessed with single-joint or repetition-maximum testing. The purpose of this study was to evaluate the reliability of countermovement-jump (CMJ) velocity-load testing and assess the relationship between CMJ velocity-load kinetics and concentric-isometric-eccentric multijoint leg-extension strength tested on a robotic servomotor leg press in trained athletes.

Methods: University athletes (N = 203; 52% female) completed 3 concentric, isometric, and eccentric maximum voluntary leg-extension contractions on the robotic leg press, followed by CMJ velocity-load testing with an additional external load of 0% (CMJBW), 30% (CMJ30), and 60% (CMJ60) of body mass.

View Article and Find Full Text PDF

: This study aimed to assess knee joint function in post-stroke patients using wireless motion sensors and functional tests. This type of evaluation may be important for improving gait quality. : The study included 25 post-stroke patients (age 53.

View Article and Find Full Text PDF

The discovery of high-temperature superconductivity in LaNiO under pressure has drawn great attention. However, consensus has not been reached on its pairing symmetry in theory. By combining density-functional-theory (DFT), maximally-localized-Wannier-function, and linearized gap equation with random-phase-approximation, we find that the pairing symmetry of LaNiO is d, if its DFT band structure is accurately reproduced by a downfolded bilayer two-orbital model.

View Article and Find Full Text PDF

Plasma nitrate (NO) and nitrite (NO) increase in a dose-dependent manner following NO ingestion. To explore if the same dose-response relationship applies to other nitric oxide (NO) congeners in different blood compartments and skeletal muscle, as well as the subsequent physiological responses, we provided 11 healthy participants with NO depleted beetroot juice (placebo), and beetroot juice (BR) containing 6.4, 12.

View Article and Find Full Text PDF

A New target of ischemic ventricular arrhythmias-ITFG2.

Eur J Pharmacol

January 2025

Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian 361023, P. R. China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China. Electronic address:

ITFG2 is an intracellular protein known to modulate the immune response of T-cells. Our previous investigation revealed that ITFG2 specifically targets ATP5b to regulate ATP energy metabolism and maintain mitochondrial function, thereby protecting the heart from ischemic injury. However, the role of ITFG2 in ischemic ventricular arrhythmias and its underlying mechanisms have not been previously reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!