Deep learning models perform unreliably when the data come from a distribution different from the training one. In critical applications such as medical imaging, out-of-distribution (OOD) detection methods help to identify such data samples, preventing erroneous predictions. In this paper, we further investigate OOD detection effectiveness when applied to 3D medical image segmentation. We designed several OOD challenges representing clinically occurring cases and found that none of the methods achieved acceptable performance. Methods not dedicated to segmentation severely failed to perform in the designed setups; the best mean false-positive rate at a 95% true-positive rate (FPR) was 0.59. Segmentation-dedicated methods still achieved suboptimal performance, with the best mean FPR being 0.31 (lower is better). To indicate this suboptimality, we developed a simple method called Intensity Histogram Features (IHF), which performed comparably or better in the same challenges, with a mean FPR of 0.25. Our findings highlight the limitations of the existing OOD detection methods with 3D medical images and present a promising avenue for improving them. To facilitate research in this area, we release the designed challenges as a publicly available benchmark and formulate practical criteria to test the generalization of OOD detection beyond the suggested benchmark. We also propose IHF as a solid baseline to contest emerging methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532230 | PMC |
http://dx.doi.org/10.3390/jimaging9090191 | DOI Listing |
Nat Commun
January 2025
Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Identifying transitional states is crucial for understanding protein conformational changes that underlie numerous biological processes. Markov state models (MSMs), built from Molecular Dynamics (MD) simulations, capture these dynamics through transitions among metastable conformational states, and have demonstrated success in studying protein conformational changes. However, MSMs face challenges in identifying transition states, as they partition MD conformations into discrete metastable states (or free energy minima), lacking description of transition states located at the free energy barriers.
View Article and Find Full Text PDFComput Biol Med
December 2024
Diagnostic Imaging Analysis Group, Medical Imaging Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.
Artificial Intelligence (AI) models may fail or suffer from reduced performance when applied to unseen data that differs from the training data distribution, referred to as dataset shift. Automatic detection of out-of-distribution (OOD) data contributes to safe and reliable clinical implementation of AI models. In this study, we propose a recognized OOD detection method that utilizes the Mahalanobis distance (MD) and compare its performance to widely known classical methods.
View Article and Find Full Text PDFInt J Med Inform
December 2024
Department of Medical Informatics, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, the Netherlands; Institute of Logic, Language and Computation, University of Amsterdam, the Netherlands; Pacmed, Amsterdam, the Netherlands. Electronic address:
Background: Machine Learning (ML) models often struggle to generalize effectively to data that deviates from the training distribution. This raises significant concerns about the reliability of real-world healthcare systems encountering such inputs known as out-of-distribution (OOD) data. These concerns can be addressed by real-time detection of OOD inputs.
View Article and Find Full Text PDFComput Med Imaging Graph
December 2024
ICMUB, Université de Bourgogne, Dijon, France. Electronic address:
In real-world scenarios, medical image segmentation models encounter input images that may deviate from the training images in various ways. These differences can arise from changes in image scanners and acquisition protocols, or even the images can come from a different modality or domain. When the model encounters these out-of-distribution (OOD) images, it can behave unpredictably.
View Article and Find Full Text PDFFront Big Data
November 2024
Department of Computer Science, The University of Texas at Dallas, Richardson, TX, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!