Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Early diagnosis and initiation of treatment for fresh osteoporotic lumbar vertebral fractures (OLVF) are crucial. Magnetic resonance imaging (MRI) is generally performed to differentiate between fresh and old OLVF. However, MRIs can be intolerable for patients with severe back pain. Furthermore, it is difficult to perform in an emergency. MRI should therefore only be performed in appropriately selected patients with a high suspicion of fresh fractures. As radiography is the first-choice imaging examination for the diagnosis of OLVF, improving screening accuracy with radiographs will optimize the decision of whether an MRI is necessary. This study aimed to develop a method to automatically classify lumbar vertebrae (LV) conditions such as normal, old, or fresh OLVF using deep learning methods with radiography. A total of 3481 LV images for training, validation, and testing and 662 LV images for external validation were collected. Visual evaluation by two radiologists determined the ground truth of LV diagnoses. Three convolutional neural networks were ensembled. The accuracy, sensitivity, and specificity were 0.89, 0.83, and 0.92 in the test and 0.84, 0.76, and 0.89 in the external validation, respectively. The results suggest that the proposed method can contribute to the accurate automatic classification of LV conditions on radiography.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532676 | PMC |
http://dx.doi.org/10.3390/jimaging9090187 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!