Visualizing Overall Water Splitting on Single Microcrystals of Phosphorus-Doped BiVO by Photo-SECM.

ACS Appl Mater Interfaces

Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.

Published: October 2023

Particulate bismuth vanadate (BiVO) has attracted considerable interest as a promising photo(electro)catalyst for visible-light-driven water oxidation; however, overall water splitting (OWS) has been difficult to attain because its conduction band is too positive for efficient hydrogen evolution. Using photoscanning electrochemical microscopy (photo-SECM) with a chemically modified nanotip, we visualized for the first time the OWS at a single truncated bipyramidal microcrystal of phosphorus-doped BiVO. The tip simultaneously served as a light guide to illuminate the photocatalyst and an electrochemical nanoprobe to observe and quantitatively measure local oxygen and hydrogen fluxes. The obtained current patterns for both O and H agree well with the accumulation of photogenerated electrons and holes on {010} basal and {110} lateral facets, respectively. The developed experimental approach is an important step toward nanoelectrochemical mapping of the activity of photocatalyst particles at the subfacet level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c13099DOI Listing

Publication Analysis

Top Keywords

water splitting
8
phosphorus-doped bivo
8
visualizing water
4
splitting single
4
single microcrystals
4
microcrystals phosphorus-doped
4
bivo photo-secm
4
photo-secm particulate
4
particulate bismuth
4
bismuth vanadate
4

Similar Publications

Lattice coherency engineering trigger rapid charge transport at the heterointerface of Te/InO@MXene photocatalysts for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.

View Article and Find Full Text PDF

Herein, a WO@TCN photocatalyst was successfully synthesized using a self-assembly method, which demonstrated effectiveness in degrading organic dyestuffs and photocatalytic evolution of H. The synergistic effect between WO and TCN, along with the porous structure of TCN, facilitated the formation of a heterojunction that promoted the absorption of visible light, accelerated the interfacial charge transfer, and inhibited the recombination of photogenerated electron-hole pairs. This led to excellent photocatalytic performance of 3%WO@TCN in degrading TC and catalyzing H evolution from water splitting under visible-light irradiation.

View Article and Find Full Text PDF

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!