The overuse of fipronil (FPN, a broad-spectrum insecticide) in agriculture has brought great concerns for environmental pollution and food safety. The development of a rapid, reliable, and portable analytical method for the on-site monitoring of FPN is therefore of great significance but is full of challenge. Herein, a novel supramolecular probe using human serum albumin (HSA) as the host and an aggregation-induced emission-active fluorescence probe LIQ-TPA-TZ as the guest was developed for the colorimetric and ratiometric detection of FPN, displaying fast response (30 s), high sensitivity (LOD ∼ 0.05 μM), and good selectivity and anti-interference performance. Moreover, portable paper-based test strips could be facilely obtained and utilized for the determination of FPN, showing colorimetric changes from yellow to orange. This supramolecular probe also demonstrated great potential in real applications for choosing the best cleaning method to reduce the residue rate of FPN on apples. This study provides a versatile tool for the fast and real-time analysis of FPN, which greatly benefits the on-site determination of pesticides with the use of simple testing apparatus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3an01333b | DOI Listing |
Anal Methods
January 2025
Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India.
A new rhodamine based turn on florescent probe ()-3',6'-bis(ethylamino)-2-(((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)amino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (RME) was efficiently synthesized through a simple condensation reaction of 2-amino-3',6'-bis(ethylamino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one and 6-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde. The receptor RME is highly non-fluorescent and when copper ions (Cu ions) are added in DMF/water (1 : 2, v/v) medium, the receptor RME exhibits a specific "turn-on" colorimetric and fluorometric response. Moreover, RME binding with Cu ions produced a remarkable color variation that was perceptible to the human eye, changing from colorless to pink.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
The adsorption of DNA probes onto nanomaterials represents a promising bioassay technique, generally employing fluorescence or catalytic activity to generate signals. A significant challenge is maintaining the catalytic activity of chromogenic catalysts during detection while enhancing accuracy by overcoming the limitations of single-signal transmission. This article presents an innovative multimodal analysis approach that synergistically combines the oxidase-like activity of Fe-N-C nanozyme (Fe-NC) with red fluorescent carbon quantum dots (R-CQDs), further advancing the dual-mode analysis method utilizing R-CQDs@Fe-NC.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China. Electronic address:
Rapid, sensitive, and accurate detection of heavy metal ions is significant for human health and ecological security. Herein, a novel single-stranded DNA with poly(thymidine) tail is tactfully designed as template to synthesize dual-emission silver nanoclusters (ssDNA-AgNCs). The obtained AgNCs simultaneously emit red and green fluorescence, and the red emission can be selectively quenched by Hg, meanwhile the green emission of AgNCs increases synchronously.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Chemistry, National Institute of Technology Calicut, Kerala 673601, India. Electronic address:
Hydrazine (NH) and hydrogen sulfide (HS) are environmental contaminants that adversely affect human health. Fluorescence-based detection methods for these analytes utilize their nucleophilicity and reducing ability. Therefore, fluorescent sensors capable of detecting and distinguishing hydrazine and HS are highly beneficial.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan, University Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.
Ethylenediamine (EDA), as an important chemical raw material and fine chemical intermediate, has been widely applied in various industries. Real-time monitoring of EDA is highly desirable in daily life due to its potential threat to human health. Herein, we report a molecular probe named 4,4'-(9-carbazole-3,6-diyl)bis(1-(naphthalen-2-ylmethyl)pyridin-1-ium) iodide (p-N-DPC·I) with ratiometric luminescent and colorimetric dual-mode responses toward EDA, endowing a highly sensitive and selective detection method for its real-time monitoring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!