A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of Strong Solvatochromism in a Molecular Photocatalyst. | LitMetric

Prediction of Strong Solvatochromism in a Molecular Photocatalyst.

Chemistry

Institute of Theoretical Chemistry, Ulm University, 89069, Ulm, Germany.

Published: January 2024

Based on quantum chemical calculations, we predict strong solvatochromism in a light-driven molecular photocatalyst for hydrogen generation, that is we show that the electronic and optical properties of the photocatalyst strongly depend on the solvent it is dissolved in. Our calculations in particular indicate a solvent-dependent relocation of the highest occupied molecular orbital (HOMO). Ground-state density functional theory and linear response time-dependent density functional theory calculations were applied in order to investigate the influence of implicit solvents on the structural, electronic and optical properties of a molecular photocatalyst. Only at high dielectric constants of the solvent, is the HOMO located at the metal center of the photosensitizer, whereas at low dielectric constants the HOMO is centered at the metal atom of the catalytically active complex. We elucidate the electronic origins of this strong solvatochromic effect and sketch the consequences of these insights for the use of photocatalysts in different environments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202302643DOI Listing

Publication Analysis

Top Keywords

molecular photocatalyst
12
strong solvatochromism
8
electronic optical
8
optical properties
8
density functional
8
functional theory
8
dielectric constants
8
prediction strong
4
molecular
4
solvatochromism molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!