In this study, we investigate the COVID-19 epidemics in Brazilian cities, using early-time approximations of the SIR model in networks and combining the VAR (vector autoregressive) model with machine learning techniques. Different from other works, the underlying network was constructed by inputting real-world data on local COVID-19 cases reported by Brazilian cities into a regularized VAR model. This model estimates directional COVID-19 transmission channels (connections or links between nodes) of each pair of cities (vertices or nodes) using spectral network analysis. Despite the simple epidemiological model, our predictions align well with the real COVID-19 dynamics across Brazilian municipalities, using data only up until May 2020. Given the rising number of infectious people in Brazil-a possible indicator of a second wave-these early-time approximations could be valuable in gauging the magnitude of the next contagion peak. We further examine the effect of public health policies, including social isolation and mask usage, by creating counterfactual scenarios to quantify the human impact of these public health measures in reducing peak COVID-19 cases. We discover that the effectiveness of social isolation and mask usage varies significantly across cities. We hope our study will support the development of future public health measures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531329 | PMC |
http://dx.doi.org/10.3390/ijerph20186758 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!