Wearable Technologies and Stress: Toward an Ethically Grounded Approach.

Int J Environ Res Public Health

Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milano, Italy.

Published: September 2023

The widespread use of digital technologies that can be worn on our bodies-wearables-is presented as a turning point for various areas of biomedical research and healthcare, such as stress. The ability to constantly measure these parameters, the perceived quality of measurement, and their individual and personal level frame wearable technology as a possibly crucial step in the direction of a more accurate and objective definition and measurement of stress for clinical, research, and personal purposes. In this paper, we discuss the hypothesis that the use of wearables for stress is also beneficial from an ethical viewpoint. We start by situating wearables in the context of existing methods and limitations of stress research. On this basis, we discuss the ethics of wearables for stress by applying ethical principles from bioethics (beneficence, non-maleficence, autonomy, justice), which allows us to identify ethical benefits as well as challenges in this context. As a result, we develop a more balanced view of the ethics of wearables for stress, which we use to present recommendations and indications with a focus on certification, accessibility, and inclusion. This article is, thus, a contribution towards ethically grounded wearable and digital health technology for stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530607PMC
http://dx.doi.org/10.3390/ijerph20186737DOI Listing

Publication Analysis

Top Keywords

wearables stress
12
stress
8
ethically grounded
8
ethics wearables
8
wearable technologies
4
technologies stress
4
stress ethically
4
grounded approach
4
approach widespread
4
widespread digital
4

Similar Publications

Stretchable and self-healing carboxymethyl cellulose/polyacrylic acid conductive hydrogels for monitoring human motions and electrophysiological signals.

Int J Biol Macromol

December 2024

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China. Electronic address:

Stretchable conductive hydrogels have attracted great attention in flexible electronics. Nevertheless, conductive hydrogels would suffer from an inevitable damage during use, significantly reducing the reliability and limiting the practicability. Herein, stretchable and self-healing conductive hydrogels are designed form carboxymethyl cellulose (CMC), polyacrylic acid (PAA), and Fe, which are applied for monitoring human motions and electrophysiological signals.

View Article and Find Full Text PDF

Self-healing PVA/Chitosan/MXene triple network hydrogel for strain and temperature sensors.

Int J Biol Macromol

December 2024

College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China. Electronic address:

Conductive hydrogels have attracted intensive attention for their promising applications in flexible electronics, sensors, and electronic skins. However, extremely poor adaptability under cold or dry environmental conditions along with inferior repairability seriously hinders the development of hydrogels in wearable electronics. Here, a triple network conductive hydrogel (PBCP-MXene) was prepared by proportionally mixing polyvinyl alcohol (PVA), borax, chitosan (CS), phytic acid (PA), and MXene.

View Article and Find Full Text PDF

Flexible perovskite solar cells (FPSCs) have great promise for applications in wearable technology and space photovoltaics. However, the unpredictable crystallization of perovskite on flexible substrates results in significantly lower efficiency and mechanical durability than industry standards. A strategy is investigated employing the polymer electrolyte poly(allylamine hydrochloride) (PAH) to regulate crystallization and passivate defect states in perovskite films on flexible substrates.

View Article and Find Full Text PDF

Targeted memory reactivation during sleep improves emotional memory modulation following imagery rescripting.

Transl Psychiatry

December 2024

Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland.

Targeted Memory Reactivation (TMR) during sleep benefits memory integration and consolidation. In this pre-registered study, we investigated the effects of TMR applied during non-rapid eye movement (NREM) sleep following modulation and updating of aversive autobiographical memories using imagery rescripting (ImR). During 2-5 nights postImR, 80 healthy participants were repeatedly presented with either idiosyncratic words from an ImR updated memory during sleep (experimental group) or with no or neutral words (control groups) using a wearable EEG device (Mobile Health Systems Lab-Sleepband, MHSL-SB) [1] implementing a close-loop cueing procedure.

View Article and Find Full Text PDF

Advancement in piezoelectric nanogenerators for acoustic energy harvesting.

Microsyst Nanoeng

December 2024

Department of Computer and Information Engineering, Khalifa University, Abu Dhabi, 12778, UAE.

The demand for sustainable energy sources to power small electronics like IoT devices has led to exploring innovative solutions like acoustic energy harvesting using piezoelectric nanogenerators (PENGs). Acoustic energy harvesting leverages ambient noise, converting it into electrical energy through the piezoelectric effect, where certain materials generate an electric charge in response to mechanical stress or vibrations. This review paper provides a comprehensive analysis of the advancements in PENG technology, emphasizing their role in acoustic energy harvesting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!