Tough, Stretchable, and Thermoresponsive Smart Hydrogels.

Gels

Institut für Technische und Makromolekulare Chemie, Universität Hamburg, 20146 Hamburg, Germany.

Published: August 2023

Self-healing, thermoresponsive hydrogels with a triple network (TN) were obtained by copolymerizing N-isopropyl acryl amide (NiPAAm) with polyvinyl alkohol (PVA) functionalized with methacrylic acid and N,N'-methylene bis(acryl amide) crosslinker in the presence of low amounts (<1 wt.%) of tannic acid (TA). The final gels were obtained by crystalizing the PVA in a freeze-thaw procedure. XRD, DCS, and SEM imaging indicate that the crystallinity is lower and the size of the PVA crystals is smaller at higher TA concentrations. A gel with 0.5 wt.% TA has an elongation at a break of 880% at a tension of 1.39 MPa. It has the best self-healing efficiency of 81% after cutting and losing the chemical network. Step-sweep strain experiments show that the gel has thixotropic properties, which are related to the TA/PVA part of the triple network. The low amount of TA leaves the gel with good thermal responsiveness (equilibrium swelling ratio of 13.3). Swelling-deswelling loop tests show enhanced dimensional robustness of the hydrogel, with a substantial constancy after two cycles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528277PMC
http://dx.doi.org/10.3390/gels9090695DOI Listing

Publication Analysis

Top Keywords

tough stretchable
4
stretchable thermoresponsive
4
thermoresponsive smart
4
smart hydrogels
4
hydrogels self-healing
4
self-healing thermoresponsive
4
thermoresponsive hydrogels
4
hydrogels triple
4
triple network
4
network copolymerizing
4

Similar Publications

Woven Cement Slurry.

Adv Mater

January 2025

College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China.

Weaving, a pivotal technique in human construction activities since the Neolithic era, remains unattainable in modern concrete construction. Here, a novel particle-polymer coalescence strategy is proposed, which involves electrostatic, bridging, coordinating, and hydrogen bonding interactions, to establish balanced particle cohesion, enabling the fabrication of stretchable cement slurry. The bending, knotting, coiling, winding, and interlacing of cement filaments for structural textiles is successfully realized beyond traditional formwork casting, grouting, and 3D-printing, and fabricate the first-ever Chinese knot woven with cement.

View Article and Find Full Text PDF

The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.

View Article and Find Full Text PDF

Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.

View Article and Find Full Text PDF

Carbon nanomaterials, particularly carbon nanotubes (CNTs), are widely used as reinforcing fillers in rubber composites for advanced mechanical and electrical applications. However, the influence of rubber functionality and its interactions with CNTs remains underexplored. This study investigates electroactive elastomeric composites fabricated with CNTs in two common diene rubbers: natural rubber (NR) and acrylonitrile-butadiene rubber (NBR), each with distinct functionalities.

View Article and Find Full Text PDF

Nanocellulose-toughened super-stretchable ionic conductive gel fibers for wearable strain sensors.

Int J Biol Macromol

January 2025

College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China. Electronic address:

In recent years, conductive gel materials have attracted extensive attention in the field of flexible electronics because of their excellent elasticity. When constructed as gel fibers, they can adapt to greater deformation, be woven, and be assembled with fabrics to make wearable smart devices without compromising comfort. However, gel fibers reported often exhibit insufficient mechanical properties and poor adaptability to different environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!