Inchworm-like Soft Robot with Multi-Responsive Bilayer Films.

Biomimetics (Basel)

School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China.

Published: September 2023

As an important branch of robotics, soft robots have the advantages of strong flexibility, a simple structure, and high safety. These characteristics enable soft robots to be widely used in various fields such as biomedicine, military reconnaissance, and micro space exploration. However, contemporary soft crawling robots still face problems such as the single drive mode and complex external equipment. In this study, we propose an innovative design of an inchworm-like soft crawling robot utilizing the synergistic interaction of electricity and moisture for its hybrid dual-drive locomotion. The legs of the soft robot are mainly made of GO-CNT/PE composite film, which can convert its own volume expansion into a corresponding bending motion after being stimulated by electricity or moisture. Unlike other drive methods, it requires less power and precision from external devices. The combination of the two driving methods greatly improves the environmental adaptability of the soft robot, and we developed visible light as the driving method on the basis of the dual drive. Finally, we also verified the robot's excellent load capacity, climbing ability, and optical drive effect, which laid the foundation for the application of soft robots in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526967PMC
http://dx.doi.org/10.3390/biomimetics8050443DOI Listing

Publication Analysis

Top Keywords

soft robot
12
soft robots
12
inchworm-like soft
8
soft crawling
8
electricity moisture
8
soft
7
robot
4
robot multi-responsive
4
multi-responsive bilayer
4
bilayer films
4

Similar Publications

Pancreaticojejunostomy (PJ) is a critical step in pancreaticoduodenectomy (PD), often complicated by the risk of postoperative pancreatic fistula (POPF). This video report demonstrates a novel robotic PJ technique employing a self-expandable metallic stent. The method involves the use of the Da Vinci Xi robotic system and the WallFlex™ Biliary RX Stent for improved anastomotic support, particularly in high-risk cases defined by soft pancreatic texture and narrow duct diameter (<3 mm).

View Article and Find Full Text PDF

Contact Dynamic Behaviors of Magnetic Hydrogel Soft Robots.

Gels

December 2024

Department of Mechanics and Engineering Science, School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.

Magnetic hydrogel soft robots have shown great potential in various fields. However, their contact dynamic behaviors are complex, considering stick-slip motion at the contact interface, and lack accurate computational models to analyze them. This paper improves the numerical computational method for hydrogel materials with magneto-mechanical coupling effect, analyses the inchworm-like contact motion of the biomimetic bipedal magnetic hydrogel soft robot, and designs and optimizes the robot's structure.

View Article and Find Full Text PDF

Empirical Data-Driven Linear Model of a Swimming Robot Using the Complex Delay-Embedding DMD Technique.

Biomimetics (Basel)

January 2025

Group of Biomechatronics, Fachgebiet Biomechatronik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany.

Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid-body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers' dynamics without implicitly measuring the hydrodynamic variables. This work proposes empirical kinematic control and data-driven modeling of a soft swimming robot.

View Article and Find Full Text PDF

A Symmetrical Leech-Inspired Soft Crawling Robot Based on Gesture Control.

Biomimetics (Basel)

January 2025

Key Laboratory of Mechanism Theory and Equipment Design, Ministry of Education, Tianjin University, Tianjin 300072, China.

This paper presents a novel soft crawling robot controlled by gesture recognition, aimed at enhancing the operability and adaptability of soft robots through natural human-computer interactions. The Leap Motion sensor is employed to capture hand gesture data, and Unreal Engine is used for gesture recognition. Using the UE4Duino, gesture semantics are transmitted to an Arduino control system, enabling direct control over the robot's movements.

View Article and Find Full Text PDF

Exoskeleton Robot Training in Two Patients with an Electrical Burn and Septic Arthritis: A Case Report.

J Burn Care Res

January 2025

Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea.

Septic arthritis (SA) are rare in patients with burns, but delayed treatment can result in irreversible joint destruction. Early diagnosis and immediate treatment are necessary to prevent joint destruction. Robot training in patients with musculoskeletal diseases and burns, can improve joint range of motion (ROM), muscle strength, and lower extremity function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!