The electric eel has an organ made up of hundreds of electrocytes, which is called the electric organ. This organ is used to sense and detect weak electric field signals. By sensing electric field signals, the electric eel can identify changes in their surroundings, detect potential prey or other electric eels, and use it for navigation and orientation. Path-finding algorithms are currently facing optimality challenges such as the shortest path, shortest time, and minimum memory overhead. In order to improve the search performance of a traditional A* algorithm, this paper proposes a bidirectional jump point search algorithm (BJPS+) based on the electricity-guided navigation behavior of electric eels and map preprocessing. Firstly, a heuristic strategy based on the electrically induced navigation behavior of electric eels is proposed to speed up the node search. Secondly, an improved jump point search strategy is proposed to reduce the complexity of jump point screening. Then, a new map preprocessing strategy is proposed to construct the relationship between map nodes. Finally, path planning is performed based on the processed map information. In addition, a rewiring strategy is proposed to reduce the number of path inflection points and path length. The simulation results show that the proposed BJPS+ algorithm can generate optimal paths quickly and with less search time when the map is known.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526936PMC
http://dx.doi.org/10.3390/biomimetics8050387DOI Listing

Publication Analysis

Top Keywords

jump point
16
electric eels
16
point search
12
navigation behavior
12
behavior electric
12
map preprocessing
12
strategy proposed
12
electric
9
bidirectional jump
8
based electricity-guided
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!