AI Article Synopsis

  • A core@shell quantum dot-molecularly imprinted polymer (QD@MIP) sensor was developed to selectively detect sulfadiazine (SDZ), an antibiotic from the sulfonamide family.
  • The MIP was synthesized directly on the quantum dot using a precipitation method and characterized using advanced techniques like scanning electron microscopy and Fourier transform infrared spectroscopy.
  • In tests, the sensor showed a linear detection range of 10.0-60.0 ppm for SDZ, with excellent repeatability and selectivity when tested against potential interfering substances, achieving recovery rates above 90% when applied to real food samples.

Article Abstract

This work reports the development and application of a highly selective core@shell-based quantum dot-molecularly imprinted polymer (QD@MIP) sensor for the detection of sulfadiazine (SDZ)-an antibiotic which belongs to the sulfonamide family. The synthesis of the smart material or MIP (molecularly imprinted polymer) was carried out by a precipitation method directly on the quantum dot surface, which played the role of a fluorescent probe in the optical sensor. The synthesized polymer was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Fluorescence experiments were performed in order to evaluate the effects of pH, interaction time of the QD@MIP with the analyte and SDZ concentration in different matrices. Under optimized conditions, a linear concentration range of 10.0-60.0 ppm and a limit of detection of 3.33 ppm were obtained. The repeatability and reproducibility of the proposed QD@MIP were evaluated in terms of the RSD, where RSD values of less than 5% were obtained in both tests. Selectivity studies were carried out in the presence of four possible interfering substances with quenching properties, and the signals obtained for these interferents confirmed the excellent selectivity of the proposed sensor; the imprinting factor value obtained for SDZ was 1.64. Finally, the proposed sensor was applied in real animal-based food samples using a spiked concentration of SDZ, where the recovery values obtained were above 90% (experiments were performed in triplicate).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526470PMC
http://dx.doi.org/10.3390/bios13090877DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
8
food samples
8
imprinted polymer
8
experiments performed
8
proposed sensor
8
imprinted polymer-coated
4
polymer-coated cdte
4
cdte quantum
4
quantum dots
4
dots fluorometric
4

Similar Publications

Phthalates, known as phthalate esters (PAEs), are among the most ubiquitous pervasive env7ironmental endocrine disruptors (EEDs), extensively utilized globally in various facets of modern life due to their irreplaceable role as plasticizers. The exponential production and utilization of plastic goods have substantially escalated plastic waste accumulation. Consequently, PAEs have infiltrated the environment, contaminating food and drinking water reservoirs, posing notable threats to human health.

View Article and Find Full Text PDF

Molecularly imprinted hydrogels embedded with two-dimensional photonic crystals for the detection of dexamethasone/betamethasone sodium phosphate.

Mikrochim Acta

January 2025

Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, School of Medicine, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China.

Dexamethasone sodium phosphate (DSP) and betamethasone sodium phosphate (BSP) imprinted hydrogels embedded with two-dimensional photonic crystals (2DPC) were developed as hormones-sensitive photonic hydrogel sensors with highly sensitive, selective, anti-interference and reproducible recognition capability. The DSP/BSP molecularly imprinted photonic hydrogels (denoted as DSP-MIPH and BSP-MIPH) can specifically recognize DSP/BSP by rebinding the DSP/BET molecules to nanocavities in the hydrogel network. This recognition is enabled by the similar shape, size, and binding sites of the nanocavities to the target molecules.

View Article and Find Full Text PDF

Molecularly imprinted electrochemical sensor to sensitively detect tetramethylpyrazine in Baijiu.

Analyst

January 2025

Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Tetramethylpyrazine (TMP) is a compound known for its natural health benefits, but current detection methods for TMP are overly expensive and time-consuming. In this study, we developed functional materials with TMP molecular recognition properties using molecularly imprinted technology. As TMP does not produce electrochemical signals in the detection potential range, hexacyanoferrate was selected as a redox probe, combined with the highly conductive polymer PEDOT:PSS to enhance electrode conductivity.

View Article and Find Full Text PDF

The valid method was developed for analyzing empagliflozin in serum/plasma/urine using a molecularly imprinted ghost polymer-solid-phase extraction approach (MISPE) with liquid chromatographic methodology. Methacrylic acid (MAA) was used as the monomer, 2,2 azobis isobutyronitrile as the initiator and ethylene glycol dimethacrylate as the cross-linker in the free radical polymerization procedure. Empagliflozin was loaded onto the polymer and eluted with 1 mL of a 9:1 MeOH:acetic acid solution.

View Article and Find Full Text PDF

Engineering conductive covalent-organic frameworks enable highly sensitive and anti-interference molecularly imprinted electrochemical biosensor.

Biosens Bioelectron

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!