Polyethers and polythioethers have a long and storied history dating back to the start of polymer science as a distinct field. As such, these materials have been utilized in a wide range of commercial applications and fundamental studies. The breadth of their material properties and the contexts in which they are applied is ultimately owed to their diverse monomer pre-cursors, epoxides and thiiranes, respectively. The facile polymerization of these monomers, both historically and contemporaneously, across academia and industry, has occurred through the use of Earth-abundant metals as catalysts and/or initiators. Despite this, polymerization methods for these monomers are underutilized compared to other monomer classes like cyclic olefins, vinyls, and (meth)acrylates. We feel a focused review that clearly outlines the benefits and shortcomings of extant synthetic methods for poly(thio)ethers along with their proposed mechanisms and quirks will help facilitate the utilization of these methods and by extension the unique polymer materials they create. Therefore, this Feature Article briefly describes the applications of poly(thio)ethers before discussing the feature-set of each poly(thio)ether synthetic method and qualitatively scoring them on relevant metrics (, ease-of-use, molecular weight control, ) to help would-be poly(thio)ether-makers find an appropriate synthetic approach. The article is concluded with a look ahead at the future of poly(thio)ether synthesis with Earth-abundant metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cc03046f | DOI Listing |
Chem Sci
January 2025
Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Universitat Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012, Bern, SWITZERLAND.
Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, and often exhibit high toxicity.
View Article and Find Full Text PDFChem Sci
December 2024
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
The search for efficient, earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) has identified unsaturated molybdenum disulfide (MoS) as a leading candidate. This review synthesises recent advancements in the engineering of MoS to enhance its electrocatalytic properties. It focuses on strategies for designing an unsaturated electronic structure on metal catalytic centers and their role in boosting the efficiency of the hydrogen evolution reaction (HER).
View Article and Find Full Text PDFChemphyschem
January 2025
Friedrich-Schiller-University Jena, Institute of Physical Chemistry, Helmholtzweg 4, 7743, Jena, GERMANY.
The design and development of particulate photocatalysts has been an attractive strategy to incorporate earth-abundant metal ions to water splitting devices. Herein, we synthesized CoFe-Prussian blue (PB) coated ZnO origami core-shell nanostructures (PB@ZnO) with different mass ratio of PB components and investigated their photocatalytic water oxidation activities in the presence of an electron scavenger. Photocatalytic experiments reveal that the integration of PB on ZnO boosts the oxygen evolution rate by a factor of ~2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!