Relapse to oxycodone seeking progressively increases after abstinence in rats, a phenomenon termed incubation of oxycodone craving. We have previously shown that the orbitofrontal cortex (OFC) plays a critical role in incubation of oxycodone craving in male rats. Here, we examined the effect of oestrous cycle on incubated oxycodone seeking in female rats, and whether the critical role of OFC in incubated oxycodone seeking generalizes to female rats. We first assessed oxycodone self-administration and incubated oxycodone seeking on abstinence day 15 across the oestrous cycle. Next, we determined the effect of chemogenetic inactivation of OFC by JHU37160 (J60), a novel agonist for Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), on incubated oxycodone seeking on abstinence day 15. Finally, we determined the effect of J60 alone on incubated oxycodone seeking on abstinence day 15. We found no difference in oxycodone intake across oestrus, pro-oestrus, and metoestrus stages during oxycodone self-administration training. Incubated oxycodone seeking was also similar between nonoestrus and oestrus female rats. Moreover, chemogenetic inactivation of OFC by J60 decreased incubated oxycodone seeking on abstinence day 15, while J60 alone had no effect on incubated oxycodone seeking in no-DREADD control rats. Taken together, results here show that the oestrous cycle has no effect on oxycodone intake and incubated oxycodone seeking in female rats under our experimental conditions. Furthermore, consistent with our previous findings in male rats, results here show that OFC also plays a critical role in incubated oxycodone seeking in female rats.

Download full-text PDF

Source
http://dx.doi.org/10.1111/adb.13325DOI Listing

Publication Analysis

Top Keywords

oxycodone seeking
48
incubated oxycodone
40
female rats
24
oxycodone
18
oestrous cycle
16
seeking abstinence
16
abstinence day
16
seeking
12
critical role
12
seeking female
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!