Background: T cell-mediated acute rejection(AR) after heart transplantation(HT) ultimately results in graft failure and is a common indication for secondary transplantation. It's a serious threat to heart transplant recipients. This study aimed to explore the novel lncRNA-miRNA-mRNA networks that contributed to AR in a mouse heart transplantation model.

Methods: The donor heart from Babl/C mice was transplanted to C57BL/6 mice with heterotopic implantation to the abdominal cavity. The control group was syngeneic heart transplantation with the same kind of mice donor. The whole-transcriptome sequencing was performed to obtain differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) in mouse heart allograft. The biological functions of ceRNA networks was analyzed by GO and KEGG enrichment. Differentially expressed ceRNA involved in programmed cell death were further verified with qRT-PCR testing.

Results: Lots of DEmRNAs, DEmiRNAs and DElncRNAs were identified in acute rejection and control after heart transplantation, including up-regulated 4754 DEmRNAs, 1634 DElncRNAs, 182 DEmiRNAs, and down-regulated 4365 DEmRNAs, 1761 DElncRNAs, 132 DEmiRNAs. Based on the ceRNA theory, lncRNA-miRNA-mRNA regulatory networks were constructed in allograft acute rejection response. The functional enrichment analysis indicate that the down-regulated mRNAs are mainly involved in cardiac muscle cell contraction, potassium channel activity, etc. and the up-regulated mRNAs are mainly involved in T cell differentiation and mononuclear cell migration, etc. The KEGG pathway enrichment analysis showed that the down-regulated DEmRNAs were mainly enriched in adrenergic signaling, axon guidance, calcium signaling pathway, etc. The up-regulated DEmRNAs were enriched in the adhesion function, chemokine signaling pathway, apoptosis, etc. Four lncRNA-mediated ceRNA regulatory pathways, Pvt1/miR-30c-5p/Pdgfc, 1700071M16Rik/miR-145a-3p/Pdgfc, 1700071M16Rik/miR-145a-3p/Tox, 1700071M16Rik/miR-145a-3p/Themis2, were finally validated. In addition, increased expression of PVT1, 1700071M16Rik, Tox and Themis2 may be considered as potential diagnostic gene biomarkers in AR.

Conclusion: We speculated that Pvt1/miR-30c-5p/Pdgfc, 1700071M16Rik/miR-145a-3p/Pdgfc, 1700071M16Rik/miR-145a-3p/Tox and 1700071M16Rik/miR-145a-3p/Themis2 interaction pairs may serve as potential biomarkers in AR after HT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518384PMC
http://dx.doi.org/10.3389/fimmu.2023.1184409DOI Listing

Publication Analysis

Top Keywords

acute rejection
12
heart transplantation
12
programmed cell
8
cell death
8
heart
8
heart allograft
8
mouse heart
8
differentially expressed
8
enrichment analysis
8
mrnas involved
8

Similar Publications

Donor-specific antibodies (DSAs) are essential causes of graft rejection in haploidentical hematopoietic stem cell transplantation (haplo-HSCT). DSAs are unavoidable for some patients who have no alternative donor. Effective interventions to reduce DSAs are still needed, and the cost of the current therapies is relatively high.

View Article and Find Full Text PDF

Background: Inadequate treatment of acute rejection (AR) in pediatric kidney transplant recipients (KTR) can contribute to early allograft failure. Serum creatinine is an insensitive marker of allograft function, especially in the pediatric population, and may not detect ongoing rejection after treatment. We evaluated the utility of follow-up biopsies to detect persistent inflammation and future episodes of rejection.

View Article and Find Full Text PDF

Calcineurin inhibitors have been the choice for maintenance immunosuppression (IS) in kidney transplant recipients (KTR), but they are associated with nephrotoxicity and metabolic side effects. We aim to compare the long-term outcomes of KTR on belatacept (bela) versus tacrolimus (tac) IS, in all KTRs and various subgroups. Using the UNOS-STAR files, we identified adult first-KTR from 2010 to 2022.

View Article and Find Full Text PDF

Although granulomatous interstitial nephritis (GIN) is a rare histological finding in kidney transplants, the joint occurrence of GIN and focal segmental glomerulosclerosis (FSGS) has not, to our knowledge, been reported in the literature. We report a case of GIN and de novo FSGS in kidney transplant recipients leading to allograft failure. A 69-year-old male with a history of end-stage renal disease (ESRD) of unknown etiology, as well as liver failure from hepatitis B and C co-infection, initially had a living unrelated kidney transplant (LURT) in 2007 and subsequently received both liver and kidney transplants (SLKTs) in 2017.

View Article and Find Full Text PDF

The human leukocyte antigen (HLA) system plays a critical role in transplant immunology, influencing outcomes through various immune-mediated rejection mechanisms. Hyperacute rejection is driven by preformed donor-specific antibodies (DSAs) targeting HLAs, leading to complement activation and graft loss within hours to days. Acute rejection typically occurs within six months post-transplantation, involving cellular and humoral responses, including the formation of de novo DSAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!