A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and Evaluation of a High-Flowrate Nanoparticle Respiratory Deposition (NRD) Sampler. | LitMetric

A high-flow (10 L/min) nanoparticle respiratory deposition (NRD) sampler was designed and evaluated to achieve reduced limits of quantification (LOQs) for metal nanoparticles. The high-flow NRD consists of an inlet, impactor stage, diffusion stage, and a final filter. An impactor stage with 12 nozzles was designed from theory to achieve a cut-off diameter of 300 nm at 50% particle collection efficiency (d). Various depths of 37-mm-diameter polyurethane foam cylinders were tested for the diffusion stage to obtain a collection efficiency curve similar to the deposition of nanoparticles in the human respiratory tract, known as the nanoparticulate matter (NPM) criterion. The objective for the final filter was a collection efficiency of near 100% with minimal pressure drop. The collection efficiencies by size and pressure drops were measured for all NRD sampler components. The final design of the impactor stage nozzle achieved a d of 305 nm. The collection efficiency for the diffusion stage with a depth of 7 cm when adjusted for presence of the impactor was the closest to the NPM curve with a R value of 0.96 and d of 43 nm. Chemical analysis of the metal content for foam affirmed that the high-flow NRD sampler required less sampling time to meet metal LOQs than the 2.5 L/min NRD sampler. The final filter with a modified support pad had a collection efficiency near 100%. The overall pressure drop of the sampler of 8.5 kPa (34 in. HO) could not be handled by commercial personal sampling pumps. Hence the high-flow NRD sampler can be used as an area sampler or without the final filter for collection of nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520748PMC
http://dx.doi.org/10.1016/j.jaerosci.2019.04.019DOI Listing

Publication Analysis

Top Keywords

nrd sampler
24
collection efficiency
20
final filter
16
high-flow nrd
12
impactor stage
12
diffusion stage
12
nanoparticle respiratory
8
respiratory deposition
8
deposition nrd
8
sampler
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!