Whether ex situ populations constructed in the limited nursery resources of botanical gardens can preserve enough genetic diversity of endangered plants in the wild remains uncertain. Here, a case study was conducted with , which is one of the species with the lowest natural distribution area in the sect. (golden camellia) of the family Theaceae. We investigated the genetic diversity and population structure of 229 samples from wild and ex situ populations using genotyping by sequencing (GBS). Core germplasm was constructed from these samples. The results showed that wild exhibited high genetic diversity, with observed heterozygosity of 0.257-0.293 and expected heterozygosity of 0.247-0.262. Compared with wild populations, the genetic diversity of ex situ populations established by transplanting wild seedlings was close to or even higher. However, the genetic diversity of those established by seed or cuttings of a few superior trees was lower. The Admixture analysis revealed that the structure of the ex situ populations derived from seeds and cuttings was relatively simple compared with the ex situ populations derived from transplanted wild seedlings and wild populations. These results suggested that direct transplanting of wild seedlings was more conducive to preserving the genetic diversity of endangered plants in the wild. In addition, wild populations demonstrated a small differentiation (mean  = 0.044) among themselves, possibly due to long-term and frequent gene flow between the wild populations. In contrast, moderate differentiation (mean  > 0.05) was detected among ex situ populations and between ex situ and wild populations. This may be the combined result of the absence of gene flow pathways and strong selection pressure in various ex situ environments. Finally, 77 core germplasms were extracted from 229, likely representing the genetic diversity of . This study provides future strategies for the ex situ conservation and management of the golden camellia species and other rare and endangered plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519411PMC
http://dx.doi.org/10.1111/eva.13584DOI Listing

Publication Analysis

Top Keywords

genetic diversity
28
situ populations
24
wild populations
20
endangered plants
12
wild
12
wild seedlings
12
populations
11
situ
10
core germplasm
8
situ conservation
8

Similar Publications

Objective: Osteoarthritis (OA) represents a condition under the influence of central nervous system (CNS) regulatory mechanisms. This investigation aims to examine the causal association between viral infections of the central nervous system (VICNS) and inflammatory diseases of the central nervous system (IDCNS) and knee osteoarthritis (KOA) at the genetic level.

Methods: In this investigation, VICNS and IDCNS were considered as primary exposure variables, while KOA served as the primary outcome.

View Article and Find Full Text PDF

L-valine holds wide-ranging applications in medicine, food, feed, and various industrial sectors. Escherichia coli, a pivotal strain in industrial L-valine production, features a concise fermentation period and a well-defined genetic background. This study focuses on mismatch repair genes (mutH, mutL, mutS, and recG) and genes associated with mutagenesis (dinB, rpoS, rpoD, and recA), employing a high-glucose adaptive culture in conjunction with metabolic modifications to systematically screen for superior phenotypes.

View Article and Find Full Text PDF

A Review of Circulating Tumor DNA (ctDNA) in Pancreatic Cancer: Ready for the Clinic?

J Gastrointest Cancer

January 2025

Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.

Pancreatic ductal adenocarcinoma is a devastating disease which is associated with an increase in cancer-related death in the USA. The minority of patients are cured by surgery alone and typically require adjuvant chemotherapy in order to improve clinical outcomes. Circulating tumor DNA (ctDNA) is an emerging technology whereby microscopic levels of minimal residual disease (MRD) can be detected in the bloodstream.

View Article and Find Full Text PDF

OsMAINTENANCE OF MERISTEM LIKE 1 controls style number at high temperatures in rice.

Plant Mol Biol

January 2025

Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133, Milan, Italy.

OsMAIL1 encodes for a rice protein of the Plant Mobile Domain (PMD) family and is strongly upregulated during floral induction in response to the presence of the florigens Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Although OsMAIL1 expression depends on the florigens, osmail1 null mutants do not show delay in flowering time, rather OsMAIL1 participates in ensuring successful reproduction. Indeed, when day temperatures reach 35 °C (7 °C higher than standard greenhouse conditions), osmail1 mutants show increased sterility due to abnormal pistil development with about half of the plants developing three styles topped by stigmas.

View Article and Find Full Text PDF

Long-read sequencing has emerged as a transformative technology in recent years, offering significant potential for the molecular diagnosis of unresolved genetic disorders. Despite its promise, the comprehensive detection and clinical annotation of genomic variants remain intricate and technically demanding. We present SUMMER, an integrated and structured workflow specifically designed to process raw Nanopore sequencing reads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!