Traumatic brain injury (TBI) causes pathophysiology that may significantly decrease quality of life over time. A major propagator of this response is chronic, maladaptive neuroinflammation, which can be exacerbated by stressors such as sleep fragmentation (SF). This study determined whether post-TBI SF had lasting behavioral and inflammatory effects even with a period of recovery. To test this, male and female mice received a moderate lateral fluid percussion TBI or sham surgery. Half the mice were left undisturbed, and half were exposed to daily SF for 30 days. All mice were then undisturbed between 30 and 60 days post-injury (DPI), allowing mice to recover from SF (SF-R). SF-R did not impair global Barnes maze performance. Nonetheless, TBI SF-R mice displayed retrogression in latency to reach the goal box within testing days. These nuanced behavioral changes in TBI SF-R mice were associated with enhanced expression of neuronal processing/signaling genes and indicators of blood-brain barrier (BBB) dysfunction. Aquaporin-4 (AQP4) expression, a marker of BBB integrity, was differentially altered by TBI and TBI SF-R. For example, TBI enhanced cortical AQP4 whereas TBI SF-R mice had the lowest cortical expression of perivascular AQP4, dysregulated AQP4 polarization, and the highest number of CD45 cells in the ipsilateral cortex. Altogether, post-TBI SF caused lasting, divergent behavioral responses associated with enhanced expression of neuronal transcription and BBB disruption even after a period of recovery from SF. Understanding lasting impacts from post-TBI stressors can better inform both acute and chronic post-injury care to improve long-term outcome post-TBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518692PMC
http://dx.doi.org/10.1089/neur.2023.0018DOI Listing

Publication Analysis

Top Keywords

tbi sf-r
16
sf-r mice
12
neuronal transcription
8
blood-brain barrier
8
sleep fragmentation
8
tbi
8
period recovery
8
associated enhanced
8
enhanced expression
8
expression neuronal
8

Similar Publications

Article Synopsis
  • Traumatic brain injury (TBI) leads to prolonged inflammation in the brain driven by microglia, which is worsened by stress and can disrupt sleep patterns.
  • Exposure to sleep fragmentation (SF) after TBI was found to affect sleep and impair brain function, particularly in males, without worsening pre-existing sleep issues.
  • At 30 days post-injury, mice that experienced SF stress showed increased inflammation, reduced neurogenesis, and altered gene expression related to synaptic function, indicating long-term effects on brain recovery.
View Article and Find Full Text PDF

Traumatic brain injury (TBI) causes pathophysiology that may significantly decrease quality of life over time. A major propagator of this response is chronic, maladaptive neuroinflammation, which can be exacerbated by stressors such as sleep fragmentation (SF). This study determined whether post-TBI SF had lasting behavioral and inflammatory effects even with a period of recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!