A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of a machine learning-based nomogram for predicting HLA-B27 expression. | LitMetric

Background: HLA-B27 positivity is normal in patients undergoing rheumatic diseases. The diagnosis of many diseases requires an HLA-B27 examination.

Methods: This study screened totally 1503 patients who underwent HLA-B27 examination, liver/kidney function tests, and complete blood routine examination in First Affiliated Hospital of Guangxi Medical University. The training cohort included 509 cases with HLA-B27 positivity whereas 611 with HLA-B27 negativity. In addition, validation cohort included 147 cases with HLA-B27 positivity whereas 236 with HLA-B27 negativity. In this study, 3 ML approaches, namely, LASSO, support vector machine (SVM) recursive feature elimination and random forest, were adopted for screening feature variables. Subsequently, to acquire the prediction model, the intersection was selected. Finally, differences among 148 cases with HLA-B27 positivity and negativity suffering from ankylosing spondylitis (AS) were investigated.

Results: Six factors, namely red blood cell count, human major compatibility complex, mean platelet volume, albumin/globulin ratio (ALB/GLB), prealbumin, and bicarbonate radical, were chosen with the aim of constructing the diagnostic nomogram using ML methods. For training queue, nomogram curve exhibited the value of area under the curve (AUC) of 0.8254496, and C-value of the model was 0.825. Moreover, nomogram C-value of the validation queue was 0.853, and the AUC value was 0.852675. Furthermore, a significant decrease in the ALB/GLB was noted among cases with HLA-B27 positivity and AS cases.

Conclusion: To conclude, the proposed ML model can effectively predict HLA-B27 and help doctors in the diagnosis of various immune diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521518PMC
http://dx.doi.org/10.1186/s12865-023-00566-zDOI Listing

Publication Analysis

Top Keywords

hla-b27 positivity
20
cases hla-b27
16
hla-b27
11
cohort included
8
hla-b27 negativity
8
positivity
5
development validation
4
validation machine
4
machine learning-based
4
nomogram
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!