Mutual diffusion of six hydrocarbons (methane, ethane, isobutane, benzene, toluene or naphthalene) diluted in supercritical carbon dioxide ([Formula: see text]) is studied by molecular dynamics simulation near the Widom line, i.e., in the temperature range from 290 to 345 K along the isobar 9 MPa. The [Formula: see text] + aromatics mixtures are additionally sampled at 10 and 12 MPa and an experimental database with Fick diffusion coefficient data for those systems is provided. Taylor dispersion experiments of [Formula: see text] with benzene, toluene, n-dodecane and 1,2,3,4-tetrahydronaphthalene are conducted along the [Formula: see text] 10 MPa isobar. Maxwell-Stefan and Fick diffusion coefficients are analyzed, together with the thermodynamic factor that relates them. It is found that the peculiar behavior of the Fick diffusion coefficient of some [Formula: see text] mixtures in the extended critical region is a consequence of the thermodynamic factor minimum due to pronounced clustering on the molecular scale. Further, the strong dependence of the Fick diffusion coefficient on the molecular mass of the solute as well as the breakdown of the Stokes-Einstein relation near the Widom line are confirmed. Eleven correlations for the prediction of the Fick diffusion coefficient of [Formula: see text] mixtures are assessed. An alternative two-step approach for the prediction of the infinite dilution Fick diffusion coefficient of supercritical [Formula: see text] mixtures is proposed. It requires only the state point in terms of temperature and pressure (or density) as well as the molecular solute mass as input parameters. First, entropy scaling is applied to estimate the self-diffusion coefficient of [Formula: see text]. Subsequently, this coefficient is used to determine the infinite dilution Fick diffusion coefficient of the mixture, based on the finding that these two diffusion coefficients exhibit a linear relationship, where the slope depends only on the molecular solute mass.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522683 | PMC |
http://dx.doi.org/10.1038/s41598-023-42892-7 | DOI Listing |
Front Physiol
December 2024
Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.
Introduction: Intracellular Ca signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Institute for Mechanics of Materials, University of Latvia, Jelgavas St. 3, LV-1004 Riga, Latvia.
This study investigated the moisture absorption and mechanical degradation of epoxy-based polymer systems with Mg-Al/NO layered double hydroxide (LDH) nanoparticles content up to 5 wt%. Such systems are developed for multilayer corrosion protective coatings. A sorption model was developed to calculate the moisture concentration field in the multilayer structures using Fick's law of diffusion.
View Article and Find Full Text PDFAdv Drug Deliv Rev
December 2024
A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Uljanova St., Nizhny Novgorod, Russia. Electronic address:
We report a new application of the recently developed technique, Optical Coherence Elastography (OCE) to quantitatively visualize kinetics of osmotic strains due to diffusive penetration of various osmotically active solutions into biological tissues. The magnitude of osmotic strains may range from fractions of one per cent to tens per cent. The visualized spatio-tempotal dynamics of the strains reflect the rates of osmotic dehydration and diffusional penetration of the active solute, which can be controlled by concentration of the solution components.
View Article and Find Full Text PDFJ Mater Chem A Mater
December 2024
Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
The catalytic and plasmonic properties of bimetallic gold-palladium (Au-Pd) nanoparticles (NPs) critically depend on the distribution of the Au and Pd atoms inside the nanoparticle bulk and at the surface. Under operating conditions, the atomic distribution is highly dynamic. Analyzing gas induced redistribution kinetics at operating temperatures is therefore key in designing and understanding the behavior of Au-Pd nanoparticles for applications in thermal and light-driven catalysis, but requires advanced characterization strategies.
View Article and Find Full Text PDFHeliyon
October 2024
Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!