Rapid, high-sensitivity detection of biomolecules using dual-comb biosensing.

Sci Rep

Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.

Published: September 2023

AI Article Synopsis

  • Effective biosensing of biomolecules is crucial for detecting infectious pathogens and environmental pollutants, especially for ongoing COVID-19 challenges like SARS-CoV-2.* -
  • The study focuses on improving the detection of SARS-CoV-2 nucleocapsid protein antigen using optical frequency combs (OFC), which convert antigen-antibody interaction signals into measurable radio-frequency shifts.* -
  • Implementation of a dual-comb setup helps overcome temperature-related signal disturbances, enhancing the sensitivity and applicability of biosensors for various pathogens and biomarkers.*

Article Abstract

Rapid, sensitive detection of biomolecules is important for biosensing of infectious pathogens as well as biomarkers and pollutants. For example, biosensing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still strongly required for the fight against coronavirus disease 2019 (COVID-19) pandemic. Here, we aim to achieve the rapid and sensitive detection of SARS-CoV-2 nucleocapsid protein antigen by enhancing the performance of optical biosensing based on optical frequency combs (OFC). The virus-concentration-dependent optical spectrum shift produced by antigen-antibody interactions is transformed into a photonic radio-frequency (RF) shift by a frequency conversion between the optical and RF regions in the OFC, facilitating rapid and sensitive detection with well-established electrical frequency measurements. Furthermore, active-dummy temperature-drift compensation with a dual-comb configuration enables the very small change in the virus-concentration-dependent signal to be extracted from the large, variable background signal caused by temperature disturbance. The achieved performance of dual-comb biosensing will greatly enhance the applicability of biosensors to viruses, biomarkers, environmental hormones, and so on.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522648PMC
http://dx.doi.org/10.1038/s41598-023-41436-3DOI Listing

Publication Analysis

Top Keywords

rapid sensitive
12
sensitive detection
12
detection biomolecules
8
dual-comb biosensing
8
biosensing
5
rapid
4
rapid high-sensitivity
4
detection
4
high-sensitivity detection
4
biomolecules dual-comb
4

Similar Publications

ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.

View Article and Find Full Text PDF

The detection of intracellular biothiols (cysteine, N-acetyl cysteine, and glutathione) with high selectivity and sensitivity is important to reveal biological functions. In this study, a 2-(2-methoxy-4-methylphenoxy)-3-chloro-5,8-dihydroxynaphthalene-1,4-dione (DDN-O) compound was newly synthesized and used as a fluorogenic probe (detector molecule) in the fluorometric method for the rapid, highly selective, and sensitive determination of biothiols. The intensity values (λ = 260 nm, λ = 620 nm) of the product were measured by adding biothiols to the reaction medium at varying concentrations and the glutathione equivalent thiol content values of each biothiol were calculated.

View Article and Find Full Text PDF

[Research progress on the application of end-tidal carbon dioxide monitoring in prehospital emergency care].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

December 2024

Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen 518071, Guangdong, China.

Prehospital emergency care is the primary stage in the treatment of critically ill patients, where efficient and accurate monitoring methods are crucial for patient survival and prognosis. End-tidal carbon dioxide (EtCO) monitoring is a real-time, non-invasive method that can sensitively capture the status of respiratory, circulatory, and metabolic functions, particularly in the urgent and complex pre-hospital environment, a immediate detection and non-invasive method, can sensitively capture the respiratory, circulatory, and metabolic status of patients. It provides valuable guidance for rapid decision-making and precise interventions.

View Article and Find Full Text PDF

Ultrafast enzyme-responsive hydrogel for real-time assessment and treatment optimization in infected wounds.

J Nanobiotechnology

January 2025

Department of Laboratory Medicine Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China.

Monitoring wound infection and providing appropriate treatment are crucial for achieving favorable outcomes. However, the time-consuming nature of laboratory culture tests may delay timely intervention. To tackle this challenge, a simple yet effective HDG hydrogel, composed of hydrogen peroxide (H₂O₂), dopamine, and GelMA polymer, is developed for the ultrafast detection and treatment of Staphylococcus aureus (SA) infections.

View Article and Find Full Text PDF

Carbon dots doped with metals and non-metals have gained much popularity due to the enhancement in their optical and electronic properties. In this study, polyethyleneimine-functionalized transition metal (nickel or copper) doped carbon dots (CD, NiCD and CuCD) were synthesized through hydrothermal method. The carbon dots exhibited a blue fluorescence at 470 nm when excited at 350 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!