The recent proliferation of NISQ devices has made it imperative to understand their power. In this work, we define and study the complexity class NISQ, which encapsulates problems that can be efficiently solved by a classical computer with access to noisy quantum circuits. We establish super-polynomial separations in the complexity among classical computation, NISQ, and fault-tolerant quantum computation to solve some problems based on modifications of Simon's problems. We then consider the power of NISQ for three well-studied problems. For unstructured search, we prove that NISQ cannot achieve a Grover-like quadratic speedup over classical computers. For the Bernstein-Vazirani problem, we show that NISQ only needs a number of queries logarithmic in what is required for classical computers. Finally, for a quantum state learning problem, we prove that NISQ is exponentially weaker than classical computers with access to noiseless constant-depth quantum circuits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522708 | PMC |
http://dx.doi.org/10.1038/s41467-023-41217-6 | DOI Listing |
J Chem Inf Model
January 2025
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
The use of quantum mechanical potentials in protein-ligand affinity prediction is becoming increasingly feasible with growing computational power. To move forward, validation of such potentials on real-world challenges is necessary. To this end, we have collated an extensive set of over a thousand galectin inhibitors with known affinities and docked them into galectin-3.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Antimicrobial peptides (AMPs) are promising candidates to combat multidrug-resistant pathogens. However, the high cost of extensive wet-lab screening has made AI methods for identifying and designing AMPs increasingly important, with machine learning (ML) techniques playing a crucial role. AI approaches have recently revolutionised this field by accelerating the discovery of new peptides with anti-infective activity, particularly in preclinical mouse models.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Objective: Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) are common neurodegenerative diseases with distinct but overlapping pathogenic mechanisms. The clinical similarities between these diseases often result in high misdiagnosis rates, leading to serious consequences. Peripheral blood mononuclear cells (PBMCs) are easy to collect and can accurately reflect the immune characteristics of both DLB and AD.
View Article and Find Full Text PDFBMC Public Health
January 2025
Al-Barkaat Institute of Management Studies, Aligarh 202122, Dr. A. P. J. Abdul Kalam Technical University, Lucknow 226010, India.
Cardiovascular disease (CVD) is a leading cause of death and disability worldwide, and its incidence and prevalence are increasing in many countries. Modeling of CVD plays a crucial role in understanding the trend of CVD death cases, evaluating the effectiveness of interventions, and predicting future disease trends. This study aims to investigate the modeling and forecasting of CVD mortality, specifically in the Sindh province of Pakistan.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA.
A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!