Single-cell epigenome analysis identifies molecular events controlling direct conversion of human fibroblasts to pancreatic ductal-like cells.

Dev Cell

Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland; Medicum, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland; Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadelléen 21, 0349 Oslo, Norway. Electronic address:

Published: September 2023

Cell fate can be reprogrammed by ectopic expression of lineage-specific transcription factors (TFs). However, the exact cell state transitions during transdifferentiation are still poorly understood. Here, we have generated pancreatic exocrine cells of ductal epithelial identity from human fibroblasts using a set of six TFs. We mapped the molecular determinants of lineage dynamics using a factor-indexing method based on single-nuclei multiome sequencing (FI-snMultiome-seq) that enables dissecting the role of each individual TF and pool of TFs in cell fate conversion. We show that transition from mesenchymal fibroblast identity to epithelial pancreatic exocrine fate involves two deterministic steps: an endodermal progenitor state defined by activation of HHEX with FOXA2 and SOX17 and a temporal GATA4 activation essential for the maintenance of pancreatic cell fate program. Collectively, our data suggest that transdifferentiation-although being considered a direct cell fate conversion method-occurs through transient progenitor states orchestrated by stepwise activation of distinct TFs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2023.08.023DOI Listing

Publication Analysis

Top Keywords

cell fate
16
human fibroblasts
8
pancreatic exocrine
8
fate conversion
8
cell
5
fate
5
single-cell epigenome
4
epigenome analysis
4
analysis identifies
4
identifies molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!