AI Article Synopsis

  • Microfiber pollution from textiles, particularly from domestic laundry, is a growing concern that researchers are actively studying.
  • Various methods for measuring microfiber release yield inconsistent results, with significant variability in the quantities reported.
  • This study specifically examines microfiber release from knitted polyester fabrics using both counting and weight-based methods, revealing that weight-based estimations indicate a much higher release of microfibers compared to counting methods, suggesting the need for further research to refine these quantification techniques.

Article Abstract

Microfiber from textiles is one of the new anthropogenic pollutants which attracted a wide range of researchers. Domestic laundry, being the most common cause of microfiber release from textiles, is widely studied. Studies exhibit a broad range of quantities of microfibers owing to the distinct quantification methodologies employed due to their convenience and resource availability. Out of several such estimation processes, reporting microfiber quantity in numbers or mass (mg or g) is quite common with respect to the unit area or weight of the textile used. However, results reported by different literature vary significantly. Hence, this study aims to analyze the microfiber release from knitted polyester fabric using count- and mass-based methods. Four different fabrics were used for this study with three different counting processes from literature along with direct weight difference estimation. The results of the direct counting method showed that the average microfiber release of selected fabrics is 13.28-33.16 microfibers per sq.cm, whereas, the direct weight estimation showed an average weight of 0.0664 ± 0.0289 mg/sq.cm. The subsequent conversion showed a release of 887.89 ± 633.49 microfibers/sq.cm of the fabric. Further, the microfiber mass was also estimated using the number of microfiber count and found that a sq.cm of fabric releases up to 0.0010-0.0024 mg of microfibers. While comparing the results, the weight-based estimation showed a significantly higher microfiber release (41.3-42.9 times) than the direct counting method. The deposition of surfactants in detergents, contaminants from the water, atmospheric contaminants, and finishes released from the fabric can be the sources of additional weights noted in the direct mass estimation. As the weight-based method is quite simple and the fastest way to quantify the microfibers, future studies must focus on this area to reduce the error percentage in quantification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119040DOI Listing

Publication Analysis

Top Keywords

microfiber release
16
microfiber
9
direct weight
8
direct counting
8
counting method
8
release
5
estimation
5
direct
5
impact quantification
4
method
4

Similar Publications

Cigarette filter microplastics are composed of cellulose acetate that does not undergo biological or photo-degradation. These microplastics are readily dispersed and can be found abundantly in water, soil, and air. These fibers possess high absorption capabilities, allowing them to collect and retain pollutants such as toxic elements.

View Article and Find Full Text PDF

Look before you leap: Are increased recycling efforts accelerating microplastic pollution?

J Ind Ecol

December 2024

Group for Sustainability and Technology ETH Zurich Zurich Switzerland.

To fight plastic pollution and reach net-zero ambitions, policy and industry set goals to increase the recycling of plastics and the recycled content in products. While this ideally reduces demand for virgin material, it also increases pressure on recyclers to find suitable endmarkets for the recyclate. This may lead to two effects: a multiplication of recycled content in applications already made of plastic and a substitution of non-plastic materials with cheap, low-quality recyclate.

View Article and Find Full Text PDF

Microplastics fibers shed from washing synthetic textiles are released directly into the waters and make up 35% of primary microplastics discharged to the aquatic environment. While filtration devices and regulations are in development, safe disposal methods remain absent. Herein, we investigate catalytic hydrothermal carbonization (HTC) as a means of integrating this waste (0.

View Article and Find Full Text PDF

The design and development of nanoparticle- and microparticle-based delivery systems incorporating carotenoids into carrier materials offers multiple advantages, including enhancing the bio-efficacy of these compounds due to improving their bioaccessibility and bioavailability. This study introduced pitanga saponified carotenoid extract (PSCE) and pitanga non-saponified carotenoid extract (PSCE) in a 12 % zein/1 %PEO solution and electrospun for fiber production. Then, the fibers were characterized, and their bioaccessibility and bioavailability were also evaluated.

View Article and Find Full Text PDF

Microfibers (MFs) represent one of the most prominent sources of microplastics in aquatic environments, primarily released during textile washing alongside surfactants found in laundry detergents. This study aimed to investigate the biodegradability of natural (cotton) and synthetic (polyester) MFs individually and in combination with two surfactants: sodium lauryl sulfate (SLS, anionic) and polyoxyethylene glycerol ester (PGE-OE6, nonionic). Using the OECD 301 F test, the research assessed biodegradation patterns and environmental interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!