We present a software solution developed in LabVIEW for a home-built High-Frequency Electron Paramagnetic Resonance (HF-EPR) spectrometer. A modular approach was applied to control the spectrometer subsystems and simplify the adaptation to hardware changes during the development. The solution implements measuring procedures for conventional Continuous Wave EPR (CW-EPR), Frequency-Swept EPR (FS-EPR), and Two-Dimensional EPR (2D-EPR) mapping, which are relevant in different cases. The software's automation capabilities were tested in several trial measurements to obtain CW-EPR spectra of Silicon Carbide doped by vanadium (SiC + V) at various temperatures and microwave frequencies, multi-frequency spectra via 2D-EPR mapping, and dense FS-EPR data of a lithium phthalocyanine crystal rotated in a magnetic field. Several prospective modifications of the software are discussed in the conclusion. A modular character allows the easy re-use of code portions in other experimental setups. The spectrometer and the software are currently deployed and utilized in a laboratory of EPR spectroscopy at Central European Institute of Technology (CEITEC) in Brno, and data obtained by it has been already used in a number of publications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2023.107556 | DOI Listing |
Sci Rep
January 2025
Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
In this work a novel method for synthesis of 1,8-dihydroxynaphthalene melanin was presented, as well as the physicochemical properties, molecular structure, and characteristics of the pigment. The proposed synthesis protocol is simple and cost-effective with no enzymes or catalysts needed. The final product is not adsorbed on any surface, since the pigment is the result of autooxidation of 1,8-dihydroxynaphthalene.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China; Yuelushan Laboratory, Hongqi Road, Changsha, Hunan 410128, PR China. Electronic address:
To enhance the activity of the nitrate reduction reaction (NORR), the development of oxygen vacancies electrocatalysts is a promising approach for improving the efficiency of ammonia synthesis. However, the mechanism by which oxygen vacancies regulate NORR to ammonia remains poorly understood. In this study, a series of CoO/FeO composite catalysts derived from ZIF-67 containing oxygen vacancies (OVs) were synthesized to elucidate the role of OVs on the activity and selectivity of ammonia synthesis.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Food Chem
December 2024
Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA. Electronic address:
J Phys Condens Matter
December 2024
Departmet of Physics(MMV), Banaras Hindu University, Varanasi, Varanasi, Uttar Pradesh, 221005, INDIA.
We report a detailed experimental study of the structural, magnetic and electrical properties of La and Ru doped (Sr1-x Lax)2Ir1-xRuxO4 (x= 0.05, 0.15).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!