A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of Microstructure on the Material Properties of LLZO Ceramics Derived by Impedance Spectroscopy and Brick Layer Model Analysis. | LitMetric

Variants of garnet-type LiLaZrO are being intensively studied as separator materials in solid-state battery research. The material-specific transport properties, such as bulk and grain boundary conductivity, are of prime interest and are mostly investigated by impedance spectroscopy. Data evaluation is usually based on the one-dimensional (1D) brick layer model, which assumes a homogeneous microstructure of identical grains. Real samples show microstructural inhomogeneities in grain size and porosity due to the complex behavior of grain growth in garnets that is very sensitive to the sintering protocol. However, the true microstructure is often omitted in impedance data analysis, hindering the interlaboratory reproducibility and comparability of results reported in the literature. Here, we use a combinatorial approach of structural analysis and three-dimensional (3D) transport modeling to explore the effects of microstructure on the derived material-specific properties of garnet-type ceramics. For this purpose, Al-doped LiLaZrO pellets with different microstructures are fabricated and electrochemically characterized. A machine learning-assisted image segmentation approach is used for statistical analysis and quantification of the microstructural changes during sintering. A detailed analysis of transport through statistically modeled twin microstructures demonstrates that the transport parameters derived from a 1D brick layer model approach show uncertainties up to 150%, only due to variations in grain size. These uncertainties can be even larger in the presence of porosity. This study helps to better understand the role of the microstructure of polycrystalline electroceramics and its influence on experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c10060DOI Listing

Publication Analysis

Top Keywords

brick layer
12
layer model
12
impedance spectroscopy
8
grain size
8
analysis
5
influence microstructure
4
microstructure material
4
material properties
4
properties llzo
4
llzo ceramics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!