In this study, 1,1-difluoroallenes underwent a regioselective [2+3] cycloaddition with nitrile oxides and imine oxides in the presence of a AuCl catalyst. ()-4-Alkylidene-5,5-difluoroisoxazolines and -isoxazolidines were obtained in regioselective and diastereoselective manners by employing aurated difluoroallylic cation intermediates. The synthesized 5,5-difluoroisoxazolines were readily aromatized through dehydrofluorination or allylic fluorine substitution to provide 5-fluoroisoxazoles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.3c02879 | DOI Listing |
Int J Mol Sci
January 2025
Research Institute of Chemistry, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia.
In this study, we report the first example of acyclic (amino)(N-pyridinium)carbenoid gold(III) complexes synthesized via a coupling reaction between 2-pyridylselenyl chloride and Au(I)-bound isonitriles. The reaction involves an initial oxidative addition of the Se-Cl moiety to Au(I), followed by the nucleophilic addition of the pyridine fragment to the isonitrile's C≡N bond, furnishing a metallacycle. Importantly, this is the first example of the pyridine acting as a nucleophile towards metal-bound isonitriles.
View Article and Find Full Text PDFJ Biol Inorg Chem
January 2025
Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
Related to the inactive form of nitrile hydratase, NHase, that contains Fe(NO) within tripeptide NS binding environment, the NO transfer reactivity of (bis-mercaptoethane diazacycloheptane)Fe(NO) and (bis-mercaptoethane diazadimethylethane)Fe(NO) is compared to Co(NO) analogs. Acceptors of NO include cobalt octaethylporphyrin and the [(NS)M] dimeric precursors in the synthesis of the Fe(NO) and Co(NO) biomimetics. Qualitative rates are augmented by a definitive kinetic study finding that rates of NO transfer from (NS)M(NO) to [(NS)M'] are dependent on M and M' as well as the hydrocarbon N to N and N to S linkers.
View Article and Find Full Text PDFJ Org Chem
January 2025
Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
A one-pot, telescoped transformation of silyl ethers into cyanides that proceeds via silyl-ether oxidation mediated by nitroxyl-radical catalyst and [bis(trifluoroacetoxy)iodo]benzene followed by an imine formation-oxidation sequence using iodine and aqueous ammonia is reported. This transformation is effective for the site-selective transformation of benzylic and allylic silyl ethers in the presence of other silyl ethers. Using an -protected oxime and a catalytic amount of triflic acid instead of iodine/aqueous ammonia is also effective for cyanation.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
Herein, we report an electricity-driven activation of aziridine via direct anodic oxidation to give -heterocycles and 1,2-bifunctionalized products by excluding any oxidant/reductant or metal catalyst. Many structurally modified aziridines were employed in the presence of different nitriles. A large variety of nucleophiles were screened to furnish chemoselectively O-alkylated and C-alkylated products.
View Article and Find Full Text PDFChemphyschem
January 2025
Department of Chemistry, Durgapur Government College, West Bengal, Durgapur, 713214, India.
The relative reactivity and cis/trans selectivity of the intramolecular [3+2] cycloaddition (IM32CA) reactions of nitrile oxide (NO), azide (AZ), nitrile sulfide (NS) and nitrile ylide (NY), leading to functionalized heterocycles are studied within the Molecular Electron Density Theory. The kinetically controlled IM32CA reactions are predicted to be cis stereospecific, while the reaction feasibility follows the order NY>NS>NO>AZ with the respective activation Gibbs free energies of 13.7, 17.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!