Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The adoption of dynamic mechanomodulation to regulate cellular behavior is an alternative to the use of chemical drugs, allowing spatiotemporal control. However, cell-selective targeting of mechanical stimuli is challenging due to the lack of strategies with which to convert macroscopic mechanical movements to different cellular responses. Here, we designed a nanoscale vibrating surface that controls cell behavior via selective repetitive cell deformation based on a poroelastic cell model. The vibrating indentations induce repetitive water redistribution in the cells with water redistribution rates faster than the vibrating rate; however, in the opposite case, cells perceive the vibrations as a one-time stimulus. The selective regulation of cell-cell adhesion through adjusting the frequency of nanovibration was demonstrated by suppression of cadherin expression in smooth muscle cells (fast water redistribution rate) with no change in vascular endothelial cells (slow water redistribution rate). This technique may provide a new strategy for cell-type-specific mechanical stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c08941 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!