The evolving international economic instability and international trade relationship demand a nation to move towards a self-reliant integrated system at a sub-national scale to address the growing human needs. Given India's role in the global trade network, it is critical to explore the underlying extensive complex trade network at the domestic scale. The potential advantages of complex interaction among the different commodities remain unexplored despite the known importance of trade networks in maintaining food security and industrial sustainability. Here we perform a comprehensive analysis of agricultural flows in contrast with non-agricultural commodities across Indian states. The spatio-temporal evolution of the networks from 2010-2018 was studied by evaluating topological network characteristics of consistent spatially disaggregated trade data. Our results show an increase in average annual trade value by 23.3% and 15.4% for agriculture and non-agriculture commodities, respectively, with no significant increase in connectivity observed in both networks. However, they depict contrasting behavior concerning the spatio-temporal changes, with non-agriculture trade becoming more dependent on production hubs and the agriculture trade progressing toward self-reliance, which signifies the evolution of the diversification in the existing agrarian trade network. Our findings could serve as an important element in deepening the knowledge of practical applications like resilience and recovery by devising design appropriate policy interventions for sustainable development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521996PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286725PLOS

Publication Analysis

Top Keywords

trade network
12
trade
10
trade networks
8
tracing spatiotemporal
4
spatiotemporal changes
4
changes agricultural
4
agricultural non-agricultural
4
non-agricultural trade
4
networks
4
networks india
4

Similar Publications

Daytime radiative cooling (DRC) materials offer a sustainable, pollution-free passive cooling solution. Traditional DRC materials are usually white to maximize solar reflectance, but applications like textiles and buildings need more aesthetic options. Unfortunately, colorizing DRC materials often reduce cooling efficiency due to colorant sunlight absorption.

View Article and Find Full Text PDF

Enhancing Activation Energy Predictions under Data Constraints Using Graph Neural Networks.

J Chem Inf Model

January 2025

Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.

Accurately predicting activation energies is crucial for understanding chemical reactions and modeling complex reaction systems. However, the high computational cost of quantum chemistry methods often limits the feasibility of large-scale studies, leading to a scarcity of high-quality activation energy data. In this work, we explore and compare three innovative approaches (transfer learning, delta learning, and feature engineering) to enhance the accuracy of activation energy predictions using graph neural networks, specifically focusing on methods that incorporate low-cost, low-level computational data.

View Article and Find Full Text PDF

As advancements in autonomous underwater vehicle (AUV) technology unfold, the role of underwater wireless sensor networks (UWSNs) is becoming increasingly pivotal. However, the high energy consumption in these networks can significantly reduce their operational lifespan, while latency issues can impair overall network performance. To address these challenges, a novel mixed packet forwarding strategy is developed, which incorporates a wakeup threshold and a dynamically adjusted access probability for the cluster head (CH).

View Article and Find Full Text PDF

Flexible memristors are promising candidates for multifunctional neuromorphic computing applications, overcoming the limitations of conventional computing devices. However, unpredictable switching behavior and poor mechanical stability in conventional memristors present significant challenges to achieving device reliability. Here, a reliable and flexible memristor using zirconium-oxo cluster (ZrOOH(OMc)) as the resistive switching layer is demonstrated.

View Article and Find Full Text PDF

Rice ( L.) is the most important food in Vietnam. However, rice is often lost in post-harvest due to fungal growth and mycotoxins contamination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!