We set out to reveal the effects of long-term changes in land use and long-term average climate on the regional biophysical environment in southern Malawi. Object-oriented supervised image classification was performed on Landsat 5 and 8 satellite images from 1990 to 2020 to identify and quantify past and present land use-land cover changes using a support vector machine classifier. Subsequently, using 2000 and 2010 land use-land cover in an artificial neural network, land use-land cover for 2020 driven by elevation, slope, precipitation and temperature, population density, poverty, distance to major roads, and distance to villages data was simulated. Between 1990 and 2020, area of land cover increased in built-up (209%), bare land (10%), and cropland (10%) and decreased in forest (30%), herbaceous (4%), shrubland (20%), and water area (20%). Overall, the findings reveal that southern Malawi is dominantly an agro-mosaic landscape shaped by the combined effects of urban and agricultural expansions and climate. The findings also suggest the need to enhance the machine learning algorithms to improve capacity for landscape modelling and, ultimately, prevention, preparedness, and response to environmental risks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522741PMC
http://dx.doi.org/10.1007/s10661-023-11783-9DOI Listing

Publication Analysis

Top Keywords

land use-land
12
use-land cover
12
long-term changes
8
changes land
8
land long-term
8
long-term average
8
average climate
8
regional biophysical
8
southern malawi
8
1990 2020
8

Similar Publications

Effects of urban sprawl due to migration on spatiotemporal land use-land cover change: a case study of Bartın in Türkiye.

Sci Rep

January 2025

Department of Forest Engineering, Faculty of Forestry, Kastamonu University, Kastamonu, Türkiye, Turkey.

Rapid urban growth is a subject of worldwide interest due to environmental problems. Population growth, especially migration from rural to urban areas, leads to land use and land cover (LULCC) changes in urban centres. Therefore, LULCC and urban growth analyses are among the studies that will help decision-makers achieve better sustainable management and planning.

View Article and Find Full Text PDF

The land use/land cover in the Sudano-Sahelian area of Cameroon has been disturbed since these 3 decades resulting from the influence of anthropogenic factors. This study aimed to assess floristic diversity and the impacts of anthropogenic activities on the Pette forest massifs in the Pette Subdivision. The transect method (1000 × 20 m) was used for plant inventory, and Landsat images 5 TM (1990), 7 ETM+ (2005) and 8 OLI_TIRS (2020) were analysed to determine land cover.

View Article and Find Full Text PDF

Up to the mountains and down to the wetlands: Thirty years' migration of cropland in China since 1990.

J Environ Manage

December 2024

Department of Urban and Rural Planning, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China. Electronic address:

Cropland changes are crucial aspects of land-use/land-cover changes (LUCC), which profoundly influence agricultural sustainability and terrestrial ecosystem health. In the context of dynamic shifts within the natural environment, coupled with the evolution of agricultural practices and the transformation of agrarian systems and policies, the trajectory of farmland alteration has exhibited significant divergence across various nations and regions. This article delves into the intriguing phenomenon of China's cropland migrating up to mountains and down to wetlands and analyses its spatiotemporal pattern evolution from 1990 to 2020.

View Article and Find Full Text PDF

Land use and land cover (LULC) changes are crucial in influencing regional climate patterns and environmental dynamics. However, the long-term impacts of these changes on climate variability in the Bilate River Basin remain poorly understood. This study examines the spatiotemporal changes in LULC and their influence on climate variability in the Bilate River Basin, Ethiopia, over the period from 1994 to 2024.

View Article and Find Full Text PDF

Floods are one of the most catastrophic and widespread disasters that cause loss of lives, infrastructure, livelihoods, and people. Therefore, the identification and mapping of flood-prone areas is crucial for flood disaster management. The main objective of this study is to identify and map the potential flood areas of the Wardha Basin using frequency ratio (FR) and statistical index (SI) models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!